GEOTECHNICAL INVESTIGATION

West Santaquin CDA Project

Santaquin, Utah

Prepared for: Santaquin City

February 2015

February 27, 2015

Santaquin City Attn: Norm Beagley, P.E., City Engineer 275 West Main Street Santaquin, UT 84655

Re: West Santaquin CDA Project

Dear Mr. Beagley:

A Geotechnical Investigation has been completed for the West Santaquin CDA Project in Santaquin, Utah. The results of this study are summarized in the report transmitted herewith.

We appreciate the opportunity of providing this service for you. If there are any questions relating to the information contained herein, please call.

Sincerely, **RB&G ENGINEE** 10 Bradford E. Price, P

bep/jal

GEOTECHNICAL INVESTIGATION

West Santaquin CDA Project

Santaquin, Utah

Prepared for: Santaquin City

February 2015

RB&G ENGINEERING, INC.

TABLE OF CONTENTS

1	INT	RODUCTION	1
	1.1	PROJECT PURPOSE AND SCOPE	1
2	GEC	DLOGICAL AND EXISTING SITE CONDITIONS	2
3	FIEL	D AND LABORATORY TESTING PROCEDURES	3
4	SUE	SURFACE SOIL AND WATER CONDITIONS	4
	4.1	DRAINAGE CHANNEL CROSSING (Borings 1 and 2)	5
	4.2	BUSINESS PARK (Boring 3, Test Pits 1, 2, 3, and 4)	5
	4.3	ROADWAY CUT (Borings 4 and 5)	6
	4.4	DRAINAGE CHANNEL (Test Pits 5, 6, and 7)	6
	4.5	ROADWAY (Test Pits 7 though 21)	7
	4.6	LABORATORY TESTS	7
5	DES	IGN CONSIDERATIONS AND RECOMMENDATIONS	9
	5.1	EMBANKMENT SETTLEMENT – DRAINAGE CHANNEL CROSSING	9
	5.2	EMBANKMENT STABILITY – DRAINAGE CHANNEL CROSSING	9
	5.3	DRAINAGE CHANNEL STRUCTURE	10
	5.3.	Box Culvert Foundation Considerations	10
	5.3.2	2 Bridge Structure Foundation Considerations	11
	5.4	DRAINAGE CHANNEL DETENTION BASINS	11
	5.5	FOUNDATION TYPES & BEARING CAPACITIES – BUSINESS PARK AREA	12
	5.6	SEISMIC CONSIDERATIONS	13
	5.7	LATERAL EARTH PRESSURES	14
	5.8	FLOOR SLABS	15
6	SITE	PREPARATION AND COMPACTED FILL REQUIREMENTS	15
7	FLE	XIBLE PAVEMENT DESIGN	16
	7.1	PAVEMENT DESIGN METHODOLOGY	16
	7.2	DESIGN TRAFFIC	17
	7.3	SUMMARY OF DESIGN ASSUMPTIONS	17
	7.4	PAVEMENT DESIGN RECOMMENDATIONS	18
8	LIM	TATIONS	19
9	REF	ERENCES	21

FIGURES

VICINITY MAP	. FIGURE 1
SITE PLAN & TEST HOLE LOCATIONS	. FIGURE 2
GEOLOGIC MAP	. FIGURE 3

APPENDIX

UNIFIED SOIL CLASSIFICATION SYSTEM BORING LOGS TEST PIT LOGS LABORATORY TESTING SETTLEMENT ANALYSES STABILITY ANALYSES PAVEMENT CALCULATIONS

GEOTECHNICAL STUDY REPORT

WEST SANTAQUIN CDA PROJECT SANTAQUIN, UTAH

1 INTRODUCTION

This report outlines the results of a geotechnical study performed for the West Santaquin CDA Project located at about 6500 West Highway 6 in Santaquin, Utah. The project area covers approximately 200 acres as shown on the Vicinity Map in Figure 1, with properties owned by either Santaquin City, Summit Creek Irrigation Company, or Cherry Spring Properties, LLC.

1.1 PROJECT PURPOSE AND SCOPE

The purpose of the geotechnical investigation was to determine the characteristics of the subsurface material throughout the site so that the following information could be provided to project designers:

- Design criteria for roads
- Analyses for potential embankments and bridge foundations along a proposed collector road corridor
- Foundation standards for the future business park development
- Soil characteristics for designing future aquifer recharge ponds and facilities
- Analyses and recommendations for a retaining wall and/or slope stabilization along a portion of a proposed collector road
- Other applicable recommendations for development of the project

2 GEOLOGICAL AND EXISTING SITE CONDITIONS

Shown in Figure 3 is a portion of the geologic map prepared by Witkind and others in 1991^1 . The natural surface materials in this general area have been mapped as (1) Qbn - Nearshore deposits of the Bonneville lake cycle (Pleistocene), consisting of light gray to gray, moderately well sorted, even-bedded deposits of cross-bedded silt, sand, gravel and sparse cobbles. Chiefly of deltaic origin. (2) Qbo - Offshore deposits of the Bonneville lake cycle (Pleistocene) consisting of light gray to tan, well-sorted, even-bedded deposits of clay, silt, and some sand. Bedrock in this general area has been mapped as Mgb – Great Blue Limestone (Upper Mississippian) – Light-bluish-gray to bluish-gray limestone and some shale. The limestone is chiefly thick bedded to massive and has been much fractured.¹

The Nephi Segment of the Wasatch Fault Zone is located approximately 2 ¹/₂ to 3 miles east of the site. This is considered an active fault zone capable of generating earthquakes with a magnitude of up to 7.

It will be observed from Figure 1 that the project site includes the Santaquin Sewer Lagoons which are used for Type 1 (treated) water storage. Seepage from the lagoons may influence the depth to groundwater in the drainage basin area west of the lagoons. The proposed future roadway will extend across the drainage northwest of the sewer lagoons and follow along the westerly side of the sewer lagoons, continuing south and tying into Summit Ridge Parkway at the south end of the project. Investigations performed to date include evaluation of embankment settlement and stability, and foundation support for roadway structures crossing the drainage. West of the drainage, the ground surface slopes upward 25 to 30 feet at a rate of about 2 horizontal to 1 vertical (2:1) to open fields presently cropped in alfalfa. The roadway alignment is presently planned to traverse along the easterly edge of the alfalfa fields. The fields slope gently downward in a northerly direction at a rate of about 3%.

The proposed roadway alignment cuts into the hillside southwest of the sewage lagoons, wrapping in a southwesterly direction for about 1400 feet before turning south across relatively flat terrain with drainage ditches and berms. The native vegetative cover generally consists of weeds, grass and sagebrush.

No structures are located in the immediate vicinity of the site from which foundation performance can be inferred.

3 FIELD AND LABORATORY TESTING PROCEDURES

The subsurface investigation for the borings was performed using a CME 55 rotary drill rig with a tri-cone rock bit and NW casing to advance the boring and water as the drilling fluid. During the subsurface investigation, sampling was performed at one- to five-foot intervals throughout the depth investigated. Both disturbed and undisturbed samples were obtained during the field investigations. Disturbed samples were obtained by driving a 2-inch split spoon sampling tube through a distance of 18 inches using a 140-pound weight dropped from a height of 30 inches. The number of blows required to drive the sampling spoon through each 6 inches of penetration is shown on the boring logs. The sum of the last two blow counts, which represents the number of blows to drive the sampling spoon through 12 inches, is defined as the standard penetration value. The standard penetration value, corrected for overburden and hammer energy, provides a good indication of the in-place density of sandy material; however, it only provides an indication of the relative stiffness of the cohesive material, since the penetration resistance of materials of this type is a function of the moisture content. Considerable care must be exercised in interpreting the standard penetration value in gravelly-type soils, particularly where the size of the granular particle exceeds the inside diameter of the sampling spoon. If the spoon can be driven through the full 18 inches with a reasonable core recovery, the standard penetration value provides a good indication of the in-place density of gravelly-type material.

It will be noted that it was not possible to drive the sampling spoon through the full 18 inches at some sampling locations. Where the sampling tube could not be driven through the full 18 inches, the number of blows to drive the spoon through a given depth of penetration is shown on the boring logs.

Undisturbed samples were obtained at select locations by pushing a thin-walled sampling tube into the subsurface material using the hydraulic pressure on the drill rig. The location at which the undisturbed samples were obtained is shown on the boring logs.

Miniature vane shear tests, which provide an indication of the undrained shearing strength of cohesive materials, were performed on samples of the clay soil during the field investigations. The results of these tests are shown on the boring logs as the torvane value in tsf.

Continuous coring was performed in bedrock using an N.Q. sized core barrel with water as the drilling fluid. The core was characterized by determining the percent recovery and the Rock Quality Designation (RQD) for each core interval. Both the percent recovery and the RQD are

shown on the boring logs. The RQD is defined as the percent of material within the core interval which has unfractured core lengths greater than 4 inches.

The subsurface investigation for the test pits was performed using a Case 580 backhoe and operator supplied by Santaquin City. The test pits were logged and sampling was performed at about three-foot intervals throughout the depth investigated. Both disturbed and undisturbed samples were obtained during the field investigations. Undisturbed samples were obtained by trimming block samples of the cohesive material encountered in the soil profile.

Each sample obtained in the field was classified in the laboratory according to the Modified Unified Soil Classification System. The symbol designating the soil type according to this system, is presented on the test hole logs. A description of the Modified Unified Soil Classification System is presented in the appendix, and the meaning of the various symbols, shown on the logs, can be obtained from this figure.

Laboratory tests performed during this investigation to define the characteristics of the subsurface material throughout the proposed site included in-place dry unit weight, natural moisture content, Atterberg Limits, mechanical analyses, unconfined compressive strength, consolidation tests, direct shear, soil moisture density (proctor), and California Bearing Ratio (CBR) tests.

Testing was performed following procedures outlined in the American Society for Testing and Materials (ASTM) standards.

4 SUBSURFACE SOIL AND WATER CONDITIONS

The characteristics of the subsurface material were evaluated drilling borings and excavating test pits in areas and to depths shown in the following table. The approximate test hole locations are shown in Figure 2.

The test hole numbers each include the prefix "14" or "15" on the site plan and test hole logs to indicate the year the test hole was completed; however, the prefix will generally be omitted in the discussion below for simplicity.

Test Hole	Location	Depth (ft)
Borings 1 and 2	East and West side of drainage channel for roadway crossing	60
Boring 3	Business Park	50
Boring 4 and 5	Roadway cut section through hillside southwest of sewer lagoons	36
Test Pits 1, 2, 3, & 4	Business Park	12 to 14
Test Pits 5, 6, & 7	Drainage channel	14
Test Pits 7 through 21	Roadway	10 to 14

The logs for the borings are presented in the appendix, and a review of the logs results in the observations outlined below. The latitude, longitude and elevation shown on the logs were obtained using a hand held GPS device. Accuracy of the survey is estimated to be ± 20 feet.

4.1 DRAINAGE CHANNEL CROSSING (Borings 1 and 2)

Boring 1 encountered stiff to hard sandy lean clay to 14 feet, followed by very dense gravel with silt and sand from 14 to 33 feet. The gravel was underlain by stiff to hard lean clay from 33 to 45 feet; then vey dense silty gravel with sand to the bottom of the boring at 61 feet.

Boring 2 encountered sandy lean clay and silt to 5.5 feet, followed by very dense gravel with silt and sand from 5.5 to 29.5 feet. The profile below 29.5 feet consisted predominately of firm to soft silt and clay.

Groundwater was measured at a depth of 24 feet in Boring 1 and 45.7 feet in Boring 2 at the time the field investigation was performed (Oct. - Nov. 2014).

4.2 BUSINESS PARK (Boring 3, Test Pits 1, 2, 3, and 4)

Boring 3 was drilled near the center of the proposed Business Park to a depth of 51 feet. The soil profile consisted predominately of medium dense to dense silty sand, sandy silt, and firm clay layers. A very dense gravelly layer was encountered between 4 and 8 feet below the surface. Groundwater was not encountered within the 51 foot depth investigated.

Test Pit 1 encountered firm to stiff lean clay to 9 feet followed by dense gravelly soils to the bottom of the test pit at 12 feet. Test Pits 2 and 3 encountered a surface firm lean clay layer extending 2 to 4 feet below the surface followed generally by layers of dense gravel and sand. A lean clay layer was encountered in Test Pit 2 between 5 and 6.5 feet. Test Pit 4 encountered

medium dense non-plastic silty sand and sandy silt to 11 feet; then stiff lean clay to the bottom of the test pit at 14 feet. Groundwater was not encountered in any of the test pits.

4.3 **ROADWAY CUT (BORINGS 4 AND 5)**

Boring 4 encountered 12 feet of overburden consisting predominately of very dense gravel to 6 feet; then dense to hard silt from 6 to 12 feet. The overburden was underlain by fractured limestone interbedded with very highly weathered mudstone/claystone layers from 12 to 37 feet. Percent recovery ranged from 26 to 100, with the RQD varying from 8 to 64%.

Boring 5 encountered clayey overburden in the upper 1 foot followed by highly fractured limestone bedrock with weathered mudstone layers to the bottom of the boring at 36.5 feet. Percent recovery ranged from 14 to 100 with the RQD varying from 0 to 62%.

Groundwater was not encountered in the 37 foot depth investigated.

4.4 DRAINAGE CHANNEL (TEST PITS 5, 6, AND 7)

These test pits were excavated in the drainage channel to evaluate material types and seepage characteristics for construction of detention berms. It will be observed from the test pit logs that the soil profile consists predominately of silty clay with sand and lean clay in the upper12 to 14 feet of the soil profile. Silty gravel w/sand was encountered in Test Pit 6 at about 13.3 feet and silty clayey gravel w/sand was encountered at 12 feet in Test Pit 7. Percolation tests were performed in the silty clay with sand at depths of 6 to 7 feet in Test Pits 5 and 7, and 5 to 6 feet Test Pit 6. The test holes were filled with water and allowed to saturate and swell for 24 hours prior to testing, followed by measurements of water drop at 30 minute intervals. The following rates were recorded.

Test Pit No.	Depth (ft)	Percolation Rate (minutes per inch)	Approx. Infiltration Rate (ft/day)
5	6	44	2.7
6	5	60	2
7	6	20	6

4.5 ROADWAY (TEST PITS 7 THOUGH 21)

The predominant soil type in the upper ~ 5 feet of the profile along the proposed roadway alignment is shown below.

Test			Test	
Test Hole Hole No. 7 Cl 9 Cl 11 Cl 13 Cl 15 Gl 17 Cl 19 Cl 19 Cl 21 Cl	Subgrade Soils		Hole	Subgrade Soils
No.			No.	
	CL – 0-2.5 Lean Clav			CL-ML – 0-0.5 Silty Sandy Clay
7	CL ML = 2.5 to 5.5 Silty Clay		8	GP-GM – 0.5–2.5 Gravel w/ Silt and Sand
	CE-ME - 2.5 to 5 Sifty Clay			ML – 2.5-4 Silt
9	CL – Lean Clay with Silt Layer		10	GP – Gravel w/ Sand
11	CI – Lean Clay	SoilsTest Hole No.Subgrade SoilsClay8CL-ML - 0-0.5 Silty Sandy Clay GP-GM - 0.5-2.5 Gravel w/ Silt and S ML - 2.5-4 SiltSilt Layer10GP - Gravel w/ Sand10GP - Gravel w/ Sand12CL - 0-0.5 Sandy Lean Clay w/ Gravel GP-GM - 0.5-4 Gravel w/ silt and sar GP-GM - 0.5-4 Gravel w/ silt and saray w/ Sand14CL - 0-1 Sandy Lean Clay GP - 1-5 Gravel w/ Sandy Gravel16CL - 0-0.8 Lean Clay w/ Sand GP-GM - 0.8-5 Gravel w/Silt and Sar ML - 3-5 Siltw/ Sand20GM, GC-GM - Silty Gravel w/ Sand Silty Clayey Gravel w/ Sand	CL – 0-0.5 Sandy Lean Clay w/ Gravel	
11 C	CL - Lean Clay			GP-GM – 0.5-4 Gravel w/ silt and sand
10	Subgrade SoilsTest HoleSubgrade SoilsL - 0-2.5 Lean Clay L-ML - 2.5 to 5 Silty ClayCL-ML - 0-0.5 Silty Sandy C GP-GM - 0.5-2.5 Gravel w/ ML - 2.5-4 SiltL - Lean Clay with Silt Layer10GP - Gravel w/ SandL - Lean Clay12CL - 0-0.5 Sandy Lean Clay GP-GM - 0.5-4 Gravel w/ SiltL - Lean Clay14CL - 0-1 Sandy Lean Clay GP-GM - 0.5-4 Gravel w/ SandL - 2-5 Silt14CL - 0-0.8 Lean Clay w/ SandL - 0-0.6 Sandy Lean Clay edrock16CL - 0-0.8 Lean Clay w/ SandL - 0-5 Lean Clay w/ Sand18CL - 0-3 Lean Clay ML - 3-5 SiltL - 0-5 Lean Clay w/ Sand20GM, GC-GM - Silty Gravel Silty Clayey Gravel w/ SandL - 0-2.5 Lean Clay L - 2.5-5 Silt w/ Sand20GM, GC-GM - Silty Gravel Silty Clayey Gravel w/ Sand	CL – 0-1 Sandy Lean Clay		
Test Hole No. 7 C 7 C C 9 C 11 C 13 M 15 G 17 B 19 C 21 C C C	ML – 2-5 Silt		14	GP – 1-5 Gravel w/ Sand
15	CC-CM Silty Clayov Gravel		16	CL – 0-0.8 Lean Clay w/ Sand
15	GC-GW – Silly Clayey Glaver		10	GP-GM – 0.8-5 Gravel w/Silt and Sand
17	CL – 0-0.6 Sandy Lean Clay		10	CL – 0-3 Lean Clay
17	Bedrock		10	ML - 3-5 Silt
10	Cl 0 E Loop Clov w/ Sond		20	GM, GC-GM – Silty Gravel w/ Sand and
19	CL - 0-5 Lean Glay W/ Sand	Je SoilsTest Hole No.Subgrade Soilslay iilty Clay8CL-ML - 0-0.5 Silty Sandy Clay GP-GM - 0.5-2.5 Gravel w/ Silt and Sand ML - 2.5-4 Siltith Silt Layer10GP - Gravel w/ Sand12CL - 0-0.5 Sandy Lean Clay w/ Gravel GP-GM - 0.5-4 Gravel w/ silt and sandClay w/ Sand14CL - 0-1 Sandy Lean Clay w/ Gravel GP-GM - 0.5-4 Gravel w/ silt and sandnyey Gravel16CL - 0-0.8 Lean Clay w/ Sand GP-GM - 0.8-5 Gravel w/ Silt and Sand18CL - 0-3 Lean Clay ML - 3-5 Silt181920GM, GC-GM - Silty Gravel w/ Sand and Silty Clayey Gravel w/ Sand		
21	CL – 0-2.5 Lean Clay			
~ 1	ML – 2.5-5 Silt w/ Sand	1		

It will be observed from the table that the predominant subgrade soil at 8 of the 15 test pit locations is lean clay or silty clay. The other 7 locations encountered gravelly soils at the expected subgrade level.

4.6 LABORATORY TESTS

The results of classification, density and moisture tests are presented on the boring logs, and the results of all laboratory tests with exception of Direct Shear and Consolidation Tests are summarized in Table 1, Summary of Test Data in the appendix. It will be noted from Table 1 that the cohesive soils have a Liquid Limit ranging from 20 to 48 and a Plasticity Index varying from 4 to 27, with only one sample greater than 15. The gravelly soils had 1 to 28% passing the No. 200 sieve (fines).

The unconfined compressive strength of cohesive samples ranged obtained from the borings ranged from 1200 to 9000 psf. The limestone bedrock had unconfined compressive strengths ranging from 11,380 to 17,230 psi. Unconfined compressive strengths of cohesive samples from the test pits ranged from 1520 to 4000 psf.

Consolidated drained direct shear tests were performed on remolded samples of lean clay from Boring 1 at 10 feet and silt from Boring 4 at 9 feet. Results of the tests are shown in the appendix. The clay sample had a friction angle of 26.5 degrees and 1 psi cohesion. The silt sample showed a friction angle of 30.9 degrees and a cohesion of 1 psi.

The compressibility characteristics of the subsurface material were evaluated by performing consolidation tests on a sample from Boring 1 at 40 feet, Boring 2 at 30, 40, and 55 feet, Boring 3 at 20 feet, Test Pit 1 at 6 feet and Test Pit 3 at 3 feet. The results of these tests are also presented in the appendix. It will be noted that the samples from the borings are over consolidated with relatively low compressibility characteristics.

During the performance of the consolidation tests, each sample was loaded at the natural moisture content until a load intensity of 0.58 tsf had been reached. At this point in the loading cycle, each sample was permitted to absorb water without any increase in the load intensity. Expansive soils always experience an increase in void ratio on absorbing water. Soils having collapsible characteristics always settle without any increase in the load when they become wet or saturated. It will be observed from these tests that no significant increase in the void ratio occurred as the sample absorbed moisture. The samples from the test pits exhibited slight collapse (1.6 and 1.3%) upon wetting.

The results of soil moisture-density tests and CBR tests are shown in the following table:

Test Pit No.	Depth (ft)	Classification	Max. Density (pcf) / Opt. Moist. %	CBR
9	1-2	Lean Clay (CL)	107 / 19.8	4.9
13	1-2	Silty Clay w/ Sand (CL-ML)	113 / 15	5.9
15	1-2	Lean Clay w/ Sand (CL)	105.6 / 19.1	4.7

It is concluded from the consolidation and classification tests that the subsurface materials at this site do not have expansive characteristics. Furthermore, there is no indication that any of the samples tested have collapsible characteristics.

5 DESIGN CONSIDERATIONS AND RECOMMENDATIONS

5.1 EMBANKMENT SETTLEMENT – DRAINAGE CHANNEL CROSSING

We understand that embankments will likely be required to establish the desired roadway grade in the vicinity of the drainage channel crossing. Test holes 14-1, 14-2, 15-7 and 15-10 were completed in this area, and the information obtained from these investigations has been used to calculate consolidation settlements which would be expected to occur under varying embankment loads.

Borings 14-1 and 14-2 encountered alternating layers of cohesive and granular soils. The cohesive soil layers were up to 14 feet thick with a total combined thickness of about 25 feet at each of the boring locations. One-dimensional consolidation tests were performed on three of the cohesive soil samples obtained during these investigations. The consolidation tests indicated the cohesive soils are over-consolidated and have low to moderate compressibility characteristics.

The primary consolidation settlement which is expected to occur beneath embankment loads has been calculated using the computer program Settle 3D. Settlement calculations have been performed for embankment heights ranging from 10 to 30 feet in height. For purposes of these preliminary evaluations, it was assumed the embankments will have top widths of 80 feet, and 2H:1V (Horizontal:Vertical) side slopes. The results of the settlement analyses are graphically illustrated on settlement plots included in the Appendix. It will be noted from this figure than primary consolidation is not expected to be more than about 1 inch beneath embankments up to 15 feet high, and primary consolidation settlement beneath embankments up to 30 feet high is expected to be less than 2 inches. A significant portion of the settlement (est. 30 to 50%) is expected to occur during fill placement.

5.2 EMBANKMENT STABILITY – DRAINAGE CHANNEL CROSSING

The stability of embankments up to 30 feet in height was evaluated using the computer program Slope/W. Spencer's method, which satisfies force and moment equilibrium was used by the computer program to calculate factors of safety against slope failure. Critical circular failure surfaces were located by the computer program using a grid and radius approach. An optimization routine was then performed in which points along the critical failure surface were iteratively adjusted. This optimization routine generally resulted in a critical failure surface with a factor of safety slightly less than the circular surface. Strength parameters used for the soil

materials were estimated based on the results of field and laboratory investigations. Computer program graphics illustrating the results of the stability analyses are included in the Appendix of this report.

The stability of general embankments up to 30 feet in height was evaluated for end of construction and long term conditions. Under both of these conditions, the critical failure surface is contained within the embankment and is relatively shallow. The minimum calculated factor of safety against slope instability is 1.49 for these embankments. This factor of safety is considered adequate, and stabilization of general embankment foundations is not anticipated to be necessary.

We understand that consideration is being given to constructing a bridge structure over the drainage channel located in the northern portion of the proposed project. Preliminary stability evaluations have been performed assuming a bridge structure constructed using vertical Mechanically Stabilized Embankment (MSE) retained abutments 30 feet in height. These preliminary evaluations indicate factors of safety against slope failure are not adequate for the conditions evaluated due to the presence of a surficial clayey zone, which was about 14 feet thick in Boring 14-1. Adequate factors of safety were calculated if the clayey zone is excavated and replaced with granular embankment fill beneath the retaining structures. We recommend that if a bridge structure is selected as the design option, further evaluation of abutment stability be performed once bridge geometry and subsurface conditions are better defined.

5.3 DRAINAGE CHANNEL STRUCTURE

Options to construct the roadway crossing over the drainage channel located in the northern portion of the proposed project include a bridge structure or a box culvert structure. Preliminary considerations for each of these options are discussed in the following sections of this report.

5.3.1 Box Culvert Foundation Considerations

If a box culvert is selected to provide the roadway crossing over the drainage channel, the bearing capacity for the structure will likely be controlled by the shallow clayey soils encountered in Borings 14-1 and 14-2. Based upon the results of the field and laboratory investigations, the shallow clayey soils have a factored bearing capacity of about 3,000 psf. This value assumes the box culvert would be about 15 feet wide.

The settlement of a box culvert structure will be a critical factor in design. Settlement of a box culvert is likely to be caused by embankment fill placed on either side of the structure. For

preliminary purposes, we recommend the settlement analysis discussed in Section 5.1 of this report be used as a general guideline for box culvert design. It should be noted the estimated settlement could be decreased by excavating and replacing the upper portion of the clayey soils encountered in the test holes. If five feet of the shallow clayey soils is replaced with compacted granular fill, the estimated settlement beneath a 30 foot embankment is reduced to 1.2 inches. The estimated settlement is reduced to 1 inch if the upper 8 feet of the clayey soil is replaced with granular fill. Excavation and replacement of the upper clayey soils would also increase the allowable bearing capacity for a box culvert structure.

5.3.2 BRIDGE STRUCTURE FOUNDATION CONSIDERATIONS

If a bridge structure is selected to provide the drainage channel crossing, we recommend consideration be given to supporting the structure using drilled shaft foundations. The dense gravelly soils located within 15 feet of the ground surface in the vicinity of the contemplated structure will provide relatively high resistance values for foundation elements which extend to depths sufficient to provide scour protection. We have calculated preliminary capacities for drilled shafts with diameters between 3 and 6 feet which can be used for conceptual design. We have assumed that the drilled shafts would extend to elevation 4817 feet, which is about 19 feet below the existing ground surface. The calculated drilled shaft geotechnical axial capacity values are summarized in the following table:

Drilled Shaft Diameter (ft)	Nominal Compressive Resistance (kips)	Strength I Compressive Resistance (kips)	Nominal Uplift Capacity (kips)	Strength I Uplift Capacity (kips)
3	424	212	250	107
4	754	377	333	143
5	1178	589	417	178
6	1696	848	500	214

5.4 DRAINAGE CHANNEL DETENTION BASINS

The silty clay and lean clay encountered in Test Pits 5, 6, and 7 can be used to construct Detention Basin berms in the drainage channel. It is recommended that the berms be keyed into the stripped foundation with a 2 foot deep trench extending along centerline. The berms should have embankment slopes no steeper than 3 Horizontal to 1 Vertical. Fill should be moisture conditioned to within 2% of optimum, placed in lifts not exceeded 6 inches after compaction, and compacted to at least 95% of the maximum density as determined by ASTM D 698. We

recommend that at least 8 inches of roadbase be used for slope protection. Where velocities are expected to exceed 6 fps, we recommend using riprap with an average rock size of 6 inches.

The clay soils have very low infiltration rates and will retain storm water for a substantial period of time. Granular soils were encountered at 12 to 14 feet in two of the test pits. It may be feasible to construct drainage sumps or wells extending into deep granular layers at select locations. If this option is to be considered, we recommend drilling borings to about 30 feet and performing field permeability tests at about 5 foot intervals.

5.5 FOUNDATION TYPES & BEARING CAPACITIES – BUSINESS PARK AREA

Boring 3 and Test Pits 1, 2, 3, and 4, located in the proposed Business Park area, were used to evaluate preliminary foundation types and bearing capacities. It is anticipated that buildings will be masonry or tilt-up type structures supported using continuous and spot footings. The magnitude of the structural loads are not known as of the preparation of this report; however, it has been assumed that the column loads will not likely exceed 500 kips and that wall loads will not likely exceed 12 klf.

We recommend that all exterior foundations be located at a depth below finished grade sufficient to provide frost protection, which is about 2.5 feet in this area, and that interior footings be located at least 1 foot below floor level. If this action is taken, it is apparent from the test hole logs that foundations will be located in soils varying from firm lean clay, medium dense sandy silt and silty sand, and very dense gravel. Since the cohesive soils (lean clay and silty clay) have a slight collapse potential when wetted, it is recommended that no footings be placed directly on this material. For preliminary design, we recommend that foundation areas encountering cohesive soils be over excavated to a depth of at least 2 feet below footing subgrade. The width of the excavation should extend 0.5 times the fill thickness plus 6 inches beyond the footing perimeter. For example, for 2 feet of fill the width should be 1.5 feet beyond the footing perimeter.

If the above action is taken, we recommend using an allowable bearing capacity for preliminary design of 3200 psf for 3 to 6 foot wide square footings and 2500 psf for 7 to 12 foot wide square footings. For continuous footings, we recommend preliminary design use an allowable bearing capacity of 2500 psf for 2 to 5 foot wide footings and 2000 psf for 6 to 12 foot wide footings. A significant increase in allowable bearing capacity can be obtained by increasing the thickness of structural fill beneath footings. It is recommended that the fill depth and footing size be

optimized during final design, once loads are known and site specific investigations have been completed for each structure.

We recommend that the structural fill be relatively well-graded sandy gravel with a maximum size of 3 inches and with less than 15% passing a No. 200 sieve. Material passing the No. 40 seive should have a plasticity index less than 6. The fill should be compacted to an in-place density equal to at least 95% of the maximum density as determined by ASTM D 1557.

To ensure that compaction requirements are met, each lift should be tested, with testing performed at 50 foot intervals along continuous footing lines and at each spot footing. Testing should be performed in accordance with ASTM D 6938 (nuclear method), or ASTM D 1556 (sand cone method).

If foundations for the proposed facilities are designed in accordance with the recommendations outlined above, the maximum settlement of any footing should not exceed one inch and differential settlement throughout the structures should not exceed 0.5 inch. It is generally recognized that the tolerable differential settlement for steel and concrete structures is about 0.002 times the column spacing. This criterion is tantamount to a differential settlement of about 0.5 inch for column spacings of 20 feet and 0.7 inch for column spacings of 30 feet. Since it is not anticipated that the column spacing for this structure will be less than 20 feet, a differential settlement of 0.5 inch should be satisfactory for the proposed facilities.

5.6 SEISMIC CONSIDERATIONS

The site is classified as Site Class D, as per Section 1613 of the 2009 and 2012 International Building Code and Chapter 20 of ASCE 7-10. The site is located at latitude 39.9786° North and longitude 111.8135° West. The Site Class D risk-targeted spectral acceleration values for use with these publications are tabulated below:

Design and MCE_R ground motion values in g.

<u>Period</u>	<u>Design</u>	<u>MCE</u> _R
PGA (0 sec)	n/a	0.607
0.2 sec SA	0.903	1.354
1.0 sec SA	0.478	0.716

The allowable soil bearing pressure indicated above may be increased by one-third where seismic forces are involved in the structural loads. If the frictional resistance of the footings and

floor slabs are used to resist seismic forces, we recommend a coefficient of friction of 0.40 be used to calculate these forces. See Section 5.3 below for recommendations related to resistance provided by passive earth pressures.

Since the static groundwater level is below 25 feet and the soils consist of lean clay and medium dense to very dense silty sand and gravel, problems associated with liquefaction during a seismic event are unlikely at this site, and no special mitigation of the foundation soils is required.

5.7 LATERAL EARTH PRESSURES

It is not anticipated that earth-retaining structures will be required for the proposed facilities. If earth-retaining structures are required, however, and if backfilling is performed using granular material, and if the backfill behind the wall is horizontal, we recommend that the earth pressures be calculated using the following equation, along with the earth pressure coefficient outlined below:

$$P = \frac{1}{2} \gamma K H^2$$

Where P = total lateral force on wall, plf K = earth pressure coefficient γ = unit weight of soil (125 pcf) H = height of retained soil against wall

The earth pressure coefficient used in designing the walls will depend upon whether the wall is free to move during backfilling operations, or whether the wall is restrained during backfilling. If the wall is free to move during backfilling operations and the backfill material is granular soil, we recommend an active earth pressure coefficient of 0.30 be used in the above equation to calculate the lateral earth pressures. If the walls are restrained from any movement during backfilling and the backfill material is granular soil, we recommend an at-rest earth pressure coefficient of 0.45 be used to calculate the lateral earth pressure. We recommend a passive earth pressure coefficient of 3.0 be used where the granular soil is used to restrain lateral movement.

The additional active earth pressure due to ground acceleration equal to two thirds of the MCE may be estimated using a coefficient of 0.24. The seismic ground motion will reduce the available passive resistance. This reduction may be accounted for as an earth pressure acting in the direction opposite the passive resistance, and computed using a coefficient of 0.64. The pressure diagrams for these forces may be roughly approximated as inverted triangles, such that

the resultant forces of the seismic components act at heights of approximately 2H/3 above the base of the wall.

It should be recognized that the pressures calculated by the above equation are earth pressures only and do not include hydrostatic pressures. Where hydrostatic pressures may exist behind a retaining structure, we recommend either the wall be designed to resist hydrostatic pressure, or that a drainage system be placed behind the wall to prevent the development of hydrostatic pressures.

5.8 FLOOR SLABS

We recommend that preliminary design consider using one foot of imported granular fill beneath all floor slabs. The upper 4 inches should consist of a free-draining granular layer and should have a maximum size less than 1 inch and not more than 5% passing a 200 sieve. The free-draining material should be densified using at least 4 passes of a smooth drum 5-ton vibratory roller or equivalent. If the above specifications are followed, the granular layer will prevent the accumulation of moisture beneath the floor slab and will also serve adequately as a base beneath the floor slabs. Where moisture sensitive flooring is planned, such as tile flooring systems, it is recommended that a vapor retarder/barrier be placed directly beneath the concrete floor, in lieu of the free-draining granular layer. It is recommended that the vapor barrier conform to ASTM E 1745 Class A requirements. A subgrade modulus of 100 pci can be used for design.

6 SITE PREPARATION AND COMPACTED FILL REQUIREMENTS

As indicated above, the vegetative cover throughout the site consists of sparse weeds and grass, with alfalfa in the cultivated fields. We recommend that the upper 6 inches be stripped from the weed and grass areas and 8 inches from cultivated areas to remove the excess organic matter in the upper portion of the soil profile. We recommend that imported fill used to establish final grade throughout the site consist of granular soil having a maximum size of 6 inches with less than 30% passing a No. 200 sieve. We recommend that the material passing a No. 40 sieve have a plasticity index less than 6. The fill should be compacted to an in-place density equal to at least 92% of the maximum density as determined by ASTM D 1557. Structural fill beneath foundations should meet requirements outlined in Section 5.1.

Roadway embankments can be constructed using overburden soils from required excavations within the project boundaries or imported fill. Roadway embankments constructed throughout the site should have side slopes of 2 Horizontal to 1 Vertical or flatter. Cohesive fill should be moisture conditioned to within 2% of optimum, placed in lifts not exceeding 8 inches in thickness, and compacted to at least 92% of the maximum laboratory density as determined by ASTM D 1557.

Excavated slopes should follow OSHA guidelines for Type B soils in overburden. Cut slopes in bedrock should be 1 Horizontal to 1 Vertical or flatter. The limestone bedrock is fractured and can likely be ripped and excavated; however, localized blasting may be required for deeper excavations.

Grading around structures should be performed in such a manner that all surface water will flow freely from the area and that no ponding will occur adjacent to the structure which will permit deep percolation into the foundation area. Roof drains should extend well beyond the building lines to prevent seepage into the foundation soils. Sprinkler heads located adjacent to the building should be directed away from the structure to prevent the percolation of water into the foundation zone. Backfilling around foundation walls should be performed using granular material densified to an in-place unit weight equal to at least 90% of the maximum laboratory density indicated above.

7 FLEXIBLE PAVEMENT DESIGN

It is recommended that a CBR value of 4.5 be used for pavement design. We also recommend that the pavement section consist of non-frost susceptible soils to a depth of 21 inches below the pavement surface. To be non-frost susceptible, the fill should have less than 8% non-plastic fines.

7.1 PAVEMENT DESIGN METHODOLOGY

The pavement design has been prepared for the subject project in accordance with the current UDOT Pavement Management and Pavement Design Manual, and the AASHTO 1993 Guide for the Design of Pavement Structures. The pavement design was calculated using AASHTOWare DARWin 3.1 Pavement Design software.

7.2 DESIGN TRAFFIC

We have assumed an AADT of 3500. Procedures in the *UDOT Pavement Management and Pavement Design Guide* were used to determine the design ESAL's for the roadway. Function Class 16 (Urban Minor Arterial Systems) was assumed with an annual growth rate of 7%. Based on these assumptions, the 20 year design life ESALs were calculated to be about 1.35 million. A copy of the ESAL spreadsheet is included in the appendix.

In providing recommendations for flexible pavement design for driveways and parking areas, an equivalent single axle load (ESAL) of 20,500 has been used. This value is comparable to 600 passenger cars and light trucks per day and 2 heavy trucks per day over a design life of 20 years.

If traffic loading is significantly different than what has been assumed, it is requested that we be notified so that appropriate modifications can be made in pavement design.

7.3 SUMMARY OF DESIGN ASSUMPTIONS

A summary of all pavement design input assumptions used to develop recommended structural pavement sections are shown below.

• Design Life	20 years (flexible)
Roadbed (Subgrade) Modulus	CBR value of 4.5. This correlates to a design roadbed modulus of 6,750 psi. (assumed Mr (psi) = CBR x 1500)
Granular Borrow Modulus	15,000 psi per UDOT Pavement Design Manual
Untreated Base Course Modulus	27,000 psi per UDOT Pavement Design Manual
Serviceability	Initial Serviceability – 4.2 Terminal Serviceability – 2.25
Reliability	90%
Structural Layer Coefficients	Asphalt Concrete (HMA) – 0.44 Untreated Base Course (UTBC) – 0.14
Drainage Coefficient	1.0 for all layers
Standard Deviation	0.45 (flexible)
Frost Protection	For this project's location, it is recommended that a minimum of 21 inches below the pavement surface consist of non-frost susceptible material (AASHTO A-1-a, non-plastic, 3 inch max. size) or better.

7.4 PAVEMENT DESIGN RECOMMENDATIONS

The proposed pavement sections for the project are conventional HMA, Untreated Base Course, and Granular Borrow. These designs are based on AASHTOWare DarWin 3.1.011 output and engineering judgment. The pavement design calculations are included in the appendix of this report.

The proposed pavement section for the minor arterial roadway is:

Course Type	Thickness
Hot Mix Asphalt	5"
Untreated Base	6"
Granular Borrow	10"

The required structural pavement thickness is 18.6 inches. The recommended section provides a Structural Number (SN) of 4.00 which exceeds the required SN of 3.69 for 1.35 million ESALs. We also note that this design meets the recommended 21-inch frost protection depth. As requested, we have considered options of reducing the HMA thickness and increasing the underlying base and/or subbase to allow evaluation of cost efficiency. Using an AADT value of 3500 over a design life of 20 years, results in a calculated ESAL of 1.35 million. For this magnitude of loading, we show a minimum HMA thickness of 4.5 inches to prevent rutting. Options to the section shown in the above table include sections consisting of 4.5" HMA / 6" UTB / 12" GB or 4.5" HMA / 8" UTB / 8"GB. Another alternate that could be considered is to reduce the ESAL's to assume a 5 year design life, reducing the ESAL's to 675,000. This allows an HMA thickness of 4 inches with a future overlay. If the roadway will experience significantly greater truck traffic related to construction development in the early years, this may not be the best option.

The results of the analysis for driveways and parking areas indicates that a flexible pavement consisting of 3 inches of an asphalt surface course plus 6 inches of untreated granular base will be adequate to support the contemplated traffic. The fine grained native soils are susceptible to frost heave if they become wet during freezing conditions. Since the groundwater level is at a substantial depth below the surface, saturation of the near surface native soils would be from surface water. Providing good drainage and sealing surface cracks in the pavement as they develop will reduce the risk of frost heave. If it is desired to minimize the risk, we recommend placing an additional 12 inches of non-frost susceptible granular soil (minus 3 inch sandy gravel with less than 8% non-plastic fines) beneath the pavement section.

The flexible pavement design indicated above is adequate to support the traffic distribution as indicated. It should be recognized, however, that if construction is performed during periods when the subsurface material throughout the site is in a wet condition, the subsurface material will not be capable of supporting the wheel loads associated with construction equipment. As a consequence of this condition, the pavement cannot be constructed as designed. It is recommended, therefore, that the pavement for the development be constructed during the summer months when the surface moisture content is at a minimum. If the pavement must be constructed during periods when the surface moisture is high, it may be necessary to stabilize the subgrade prior to construction of the pavement section. Stabilization techniques are dependent upon the conditions encountered and construction methods. An additional 1-foot of granular subbase plus a geotextile fabric may be required at select locations if wet conditions exist at the subgrade level such that compaction of the subgrade is not feasible.

All base material should be densified to an in-place unit weight equal to 95% of the maximum laboratory density indicated above and all untreated granular base should conform to Utah Department of Transportation Specifications. Mineral aggregates used in the asphalt surface course should conform to Section 02741 of the standard specifications of the Utah State Department of Transportation. Mixing, placing, and densification of all asphalt materials should also conform to UDOT standards.

8 LIMITATIONS

The conclusions and recommendations presented in this report are based upon the results of the field and laboratory tests performed throughout the site. It should be recognized that soil materials are inherently heterogeneous and that conditions may exist throughout this site which could not be defined during this investigation. With respect to structures, this report should be considered preliminary in nature, requiring site specific investigations once the building sites and structure type have been defined.

If, during construction, conditions are encountered which appear to be different than those presented in this report, it is requested that we be advised in order that appropriate action may be taken.

The information contained in this report is provided for the specific location and purpose of the client named herein and is not intended or suitable for reuse by any other person or entity whether for the specified use, or for any other use. Any such unauthorized reuse, by any other party is at that party's sole risk and RB&G Engineering, Inc. does not accept any liability or responsibility for its use.

9 **REFERENCES**

1. Geologic Map of the Nephi 30' x 60' Quadrangle, Carbon, Emery, Juab, Sanpete, Utah, and Wasatch Counties, Utah, Department of the Interior, U.S. Geological Survey, *Irving J. Witkind and Malcolm P. Weiss, 1991.*

Figure 1 VICINITY MAP Santaquin (West) CDA Project Santaquin, Utah County, Utah

Figure 2 SITE PLAN & TEST HOLE LOCATIONS Santaquin (West) CDA Project Santaquin, Utah County, Utah

Figure 3 GEOLOGIC MAP Santaquin (West) CDA Project Santaquin, UJtah County, Utah

Unified Soil Classification System

Major Divisions Major Divisions Clea Gravels Gravels Base of the second seco			Group Symbols Typical Names		Laboratory Classification Criteria						
		Clean Gravels	GW	Well graded gravels, gravel-sand mixtures, little or no fines	For laboratory classification of coarse-grained soils	$C_{u} = \frac{D_{60}}{D_{10}}$ $C_{e} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}}$	Greater than 4 Between 1 and 3				
COARSE- GRAINED SOILS more than half of material is larger than No. 200 sieve FINE- GRAINED SOILS more than half of material is sm aller than No. 200 sieve HIGH	Gravels more than half of coarse	little or no fines	GP	Poorly graded gravels, gravel-sand mixtures, little or no fines	Determine	Not meeting all gr requirements for (adation GW				
	fraction is larger than No. 4 sieve size	Gravels With Fines	GM*	Silty gravels, poorly graded gravel-sand-silt mixtures	gravel and sand from grain-size curve.	sand -size Atterberg limits on PI less than 4 of Son con PI less than 4 of Son cases requiring access for Gw Above "A" line w PI between 4 an 7 are borderline cases requiring uses of dual					
		appreciable amount of fines	GC	Clayey gravels, poorly graded gravel-sand-clay mixtures	percentage of fines (fraction smaller than No. 200 sieve size), coarse-	Atterberg lim its above "A" line, or PI greater	cases requiring uses of dual symbols				
		Clean Sands	sw	Well graded sands, gravelly sands, little or no fines	grained soils are classified as follows:	$C_{u} = \frac{D_{60}}{D_{10}}$	Greater than 6 Between 1 and 3				
	Sande	little or no			Less than 5% GW, GP, SW, SP	$C_c = \frac{1}{D_{10} \times D_{60}}$					
	more than half of coarse	fin e s	SP	Poorly graded sands, gravelly sands, little or no fines	More than 12% GM, GC, SM, SC	Not meeting all gr requirements for S	adation SW				
	fraction is smaller than No. 4 sieve size	Sands with Fines	SM* d	Silty sands, poorly graded sand-silt mixtures	5% to 12% Borderline cases requiring use of dual symbols**	Atterberg limits below "A" line, or PI less than 4	Between 1 and 3 dation W Above "A" line with PI between 4 and 7 are borderline cases requiring uses of dual symbols				
		amount of fines	SC	Clayey sands, poorly graded sand-clay mixtures		Atterberg lim its above "A" line, or PI greater	uses of dual symbols				
No. 200 Silve Sands little or no fines Dec Less than 5% GW, GP, SW, SP More than half of coarse fraction is maller than No. 4 sieve size Sands with Fines amount of fines SP Poorly graded sands, gravelly sands, little or no fines Wore than 12% GM, GC, SM, SC SW to 12% Borderline cases requiring use of ual symbols** Silts and Clays Solts Solts Silts and Clays liquid limit is smaller than half of material is smaller than No. 200 sieve Silts and Clays liquid limit is greater than 50 ML Inorganic clays of high plasticity, fat clays For laboratory fine silts, micaceous or diatom accous fine sand or silts of or silts of or diatom accous fine sand or silts of or silts, micaceous or diatom accous fine sand silts with sight plasticity, fat clays For laboratory fine silts and organic silt clays of high plasticity, fat clays MH Inorganic clays of high plasticity, fat clays Silts and Clays fiquid limit is greater than 50 MH			ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity	For laboratory classification of fine-grained soils						
	Silts and liquid l less th	1 Clays imitis an 50	CL 1	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean	60						
			OL	clays Organic silts and organic silt-clays of low plasticity	40	CL-2 LA UNE					
		-1 OL or ML	70 80 90 100								
	Silts and Clays liquid limit is greater than 50		СН	Inorganic clays of high plasticity, fat clays	0 10 20	Liquid Limit	art				
FINE- GRAINED SOILS more than half of material is smaller than No. 200 sieve HIG			ОН	Organic clays of medium to high plasticity, organic silts		i lasticity CII					
HIGI	HLY ORGANIC SO	ILS	Pt	Peat and other highly organic soils	NOTE: USCS Mo	odified to include CL-ty	pe subcategories				

*Division of GM and SM groups into subdivisions of d and u for roads and airfields only. Subdivision is based on Atterberg limits; suffix d used when liquid limit is 28 or less and the PI is 6 or less, the suffix u used when liquid limit is greater than 28.

**Borderline classification: Soils possessing characteristics of two groups are designated by combinations of group symbols. (For example GW-GC, well graded gravel-sand mixture with clay biner.)

Boring Logs

ECT.	CAL CAL								50			SHE	ET	1.0	E 2
	JAC ANIT				UDA PRU		PROIE		IMRF	R· 2	014	.01 ()34		
TION		TIN	1 24	0 081176		111 810593 (SEE SITE PLAN)	DATE S	TART	ED	<u>ے .</u> 1	0/16	6/14	. т	-	
INC N	LA		N 33	9.901140.		ASING TO 43.5'				D: 1	0/16	5/14			-
FP.					V		GROUN				~4	836	6.0'		
	WAT	FR	•, C		27.0'	AFTER 24 HOURS: ▼ 24.0'	LOGGE	DBY	M. 1	HAN	SEN	N. J.	BO	ON	E
				Sample	21.0					Att	er.	Gra	adati	on	
Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	Material Description		Dry Density (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	
		X	14	16,22,11,(70)	CL	brown, moist to dry, very stiff									
5			8	8,7,4,(23) PP 2.5	CL	brown, slightly moist, stiff SANDY LEAN CLAY									
10			12	16,20,15,(56) <i>PP 4.5</i>	CL	brown, slightly moist, hard			11.0	25	8				
15-	0000		10	20,50,50,(99+)	GP-GM	brown, slightly moist, very dense		0							
20-	000000		10	30,65,75,(99+) GP-GM	brown, moist, very dense			8.3		NP	58	35	7	
25- -	0.000000		0	80/5"	3	GRAVEL W/SILT & SA possible cobbles no recovery	AND								
30-	000000		12	44,40,40,(82)	GP-GM	red-brown, moist, very dense									
35-			16	20,21,24,(44)	CL-ML	SILTY CLAY									
	1	1		· · · · · ·		LEAN CLAY									
	IT: S. TION: ING M ER: _ H TO V Depth (ft) 10 - 10 - 10 - 10 - 10 - 15 - 20 - 25 - 30 - 30 - 35 - -	TION: LA ING METH ER: T.K. H TO WAT Depth (ft) 10- 15- 00- 00- 00- 00- 00- 00- 00- 0	TION: LAT: N ING METHOL ER: T. KERI H TO WATER Depth (ft) 10 15 20 20 20 20 20 20 20 20 20 20 20 20 20	TICN: LAT: N 33 ING METHOD: $-$ ER: T. KERN, $-$ H TO WATER - IN Depth (ft) $ -$	T: SANTAQUIN CITY TION: LAT: N 39.981146. ING METHOD: 96-CME-55 ER: T. KERN, S. CHAFFIN H TO WATER - INITIAL: ∇ Depth 0^{00} 0^{10} 0^{10} 0^{10} 0^{10} 0^{11} $16,22,11,(70)$ 5^{-1} 0^{11} 14^{11} $16,22,11,(70)$ 10^{-1} 12^{11} $16,20,15,(56)$ PP 4.5 10^{-1} 10^{11} 10^{12} $20,50,50,(99+1)$ 20^{-1} 10^{11} 10^{12} $20,50,50,(99+1)$ 20^{-1} 10^{11} 10^{12} $30,65,75,(99+1)$ 20^{-1} 10^{11} 12^{12} $44,40,40,(82)$ 30^{-1} 11^{12} $144,40,40,(82)$ 30^{-1} 11^{12} $144,40,40,(82)$ 30^{-1} 11^{12} $144,40,40,(82)$ 30^{-1} 11^{12} $144,40,40,(82)$ 30^{-1} 11^{12} $144,40,40,(82)$ 30^{-1} 11^{12} $144,40,40,(82)$ 30^{-1} 11^{12} $144,40,40,(82)$	T: SANTAQUIN CITY TION: LAT: N 39.981146, LON: W- ING METHOD: $96-CME-55 / N.W. C$ ER: T. KERN, S. CHAFFIN H TO WATER - INITIAL: $2 27.0'$ Sample Deptitin 0 0 0 0 0 0 0 0	T: <u>SANTAQUIN CITY</u> TION: <u>LAT: N 39.981146. LON: W -111.810593 (SEE SITE PLAN)</u> ING METHOD: <u>96-CME-55 / N.W. CASING TO 43.5'</u> ER: <u>T. KERN S. CHAFFIN</u> H TO WATER - INITIAL: $\forall 27.0'$ AFTER 24 HOURS: $\P 24.0'$ Beginth $\frac{1}{92}$ $\frac{5}{22}$ $\frac{5}{22}$ $\frac{5}{22}$ $\frac{5}{22}$ $\frac{5}{22}$ $\frac{1}{22}$ $\frac{5}{22}$ $\frac{1}{22}$ $\frac{1}{1}$	T: SANTAQUIN CITY PROJE TION: LAT: N39.981146. LON: W - 111.810593 (SEE SITE PLAN) DATE G ING METHOD: 96-CME-55 / N.W. CASING TO 43.5' DATE O GROUM HTO WATER INTIAL: V 27.0' AFTER 24 HOURS: V 24.0' LOGGE Ing Sample GROUM AFTER 24 HOURS: V 24.0' LOGGE Ing Sample Material Description Ingent Association Ingent Association Ingent Association Ing Ingent Association Ingent Association Ingent Association Ingent Association Ingent Association Ingent Association Ingent Association<	T: SANTAQUIN CITY PROJECT NU ItON: LAT: N 39.981146, LON: W-111.810593 (SEE SITE PLAN) DATE START ING METHOD: 96-CME-55 / N.W. CASING TO 43.5' GROUND EL ET: T. KENNS, CHAFFIN AFTER 24 HOURS: ¥ 24.0' LOGGED BY. TOWATER - INITIAL: ½ 27.0' AFTER 24 HOURS: ¥ 24.0' LOGGED BY. Deptin § §	T: SANTAQUIN CITY PROJECT NUMBE IDON: LAT: N 39.961146. LON: W -111.810593 (SEE SITE PLAN) DATE STARTED: INIG METHOD: 96-CME-55 / N.W. CASING TO 43.5' CROWN CASING TO 43.5' CROWN CLEVAT HTO WATER - INITIAL: V 27.0' AFTER 24 HOURS: V 24.0' LOGGED BY: M. Deptin by v v v v v v v v v v v v v v v v v v	T: SANTAQUIN CITY PROJECT NUMBER: 2 TON: LAT: N 39.981146. LON: W-111.810593 (SEE SITE PLAN) DATE STARTES INIG METHOD: 96-CME-55 / N.W. CASING TO 43.5' DATE STARTES ET: T. KERN S. CHAFTIN GROUND ELEVATION. HTO WATER - INITIAL: V 27.0' AFTER 24 HOURS: V 24.0' Deptin 100: 98-CME-55 / N.W. CASING TO 43.5' GROUND ELEVATION. LOGGED BY: M. HAN Sample Deptin 100: 98-CME-75 / N.W. CASING TO 43.5' GROUND ELEVATION. 100 Sample Material Description 110 Sample Image: 10 mon. slightly molet, sliff 10 11 16, 22, 11, 70) CL brown, slightly molet, sliff 10 11 12 16, 20, 15, 55) CL brown, slightly molet, sliff 10 10 20, 50, 50, (69+ GP-GM brown, slightly molet, very dense 8.3 20 10 20, 50, 57, (69+ GP-GM brown, molet, very dense 8.3 30 12 4, 40, 40, (82) GP-GM dense GRAVEL W/SILT & SAND 31 12 4, 40, 40, (82) GP-GM dense GRAVEL W/SILT & SAND 31 1	T: SANTAQUIN CITY PROJECT HUMBER: 2014 TON: LAT: N 39.981146; LON: W -111.810593 (SEE SITE PLAN) DATE STARTED: DATE STARTE	T: SANTAQUIN CITY PROJECT NUMBER: 201401.1 TION: LAT: N 30.981146. LON: W -111.810593 (SEE SITE PLAN) DATE STARTED: 10/16/14 Date Started Geodes String TO 43.5" DATE STARTED: 10/16/14 ER: T. KERN, S. CHAFFIN AFTER 24 HOURS: ¥ 24.0" LOGGED BY: M. HANSEN.J MAINSEN.J To WATER - INITIAL: ½ Z10" AFTER 24 HOURS: ¥ 24.0" LOGGED BY: M. HANSEN.J Material Description No. 4836 Deptin book 14 16,22,11/(70) CL brown, molist to dry, very stiff Sample No. 4836 5 Sample Sample Sample No. 4836 No. 4836 6 8,74,(23) CL brown, slightly molet, sliff SANDY LEAN CLAY No. 43,5 10 12 16,20,15,068 CL brown, slightly molet, sliff SANDY LEAN CLAY NP 58 20 10 20,50,50,199* GP-GM brown, molet, very dense 8,3 NP 58 21 10 20,50,50,199* GP-GM brown, molet, very dense 8,3 NP 58 20 10 20,50,50,199* GP-GM brown, molet, very dense	T: SANTAQUIN CITY PROJECT NUMBER: 201401.034 TION: LAT: N.93.981146, LON: W. 111.810593 (SEE SITE PLAN) DATE STARTED: 10/16/14 DATE STARTED: 10/16/14 DATE STARTED: 10/16/14 ER: T. KERN, S. CHAFFIN AFTER 24 HOURS: ¥ 24.0' LOGGED DY: M. HANSEN, J. BO' Sample Sample Sample Sample Sample Sample Sample Sample Material Description Sample After. Carden Sample Sample Material Description Sample After. Carden Sample Sample Sample Sample Sample Sample Sample Sample Material Description Sample Sample Sample Sample Sample B 8,74,023 CL brown, slightly moist, stiff Sample Sample	T: SANTAQUIN CITY PROJECT NUMBER: 201401.034 TION: LAT: N 99.841146, LON: W -111.810593 (SEE SITE PLAN) DATE STARTED: 10/16/14 DATE STARTED: 10/16/14 DATE STARTED: 10/16/14 Control (See Site PLAN) DATE STARTED: 10/16/14 GROUND ELEVATION: -4836.0' ER: T. KERN, S. CHAFFIN AFTER 24 HOURS: ¥ 24.0' LOGGED BY: M. HANSEN, J. BOOM Sample Sample AFTE Control (See Site PLAN) Material Description B Sample Sample AFTE Control (See Site PLAN) Material Description B B Sample USCS Material Description B

DRILL HOLE LOG PROJECT: SANTAQUIN (WEST) CDA PROJECT CLIENT: SANTAQUIN CITY LOCATION: LAT: N 39.981146, LON: W -111.810593 (SEE SITE PLAN) DRILLING METHOD: 96-CME-55 / N.W. CASING TO 43.5'							BURING NO. 14-1 SHEET 2 OF 2											
							PROJE	JECT NUMBER: 201401.034										
							STARTED: 10/16/14											
							COMPLETED: 10/16/14											
DRILLER: T. KERN, S. CHAFFIN GR								GROUN	OUND ELEVATION: _~4836.0'									
DEPTH TO WATER - INITIAL: 7 27.0' AFTER 24 HOURS: 24.0'							LOGGE	LOGGED BY: M. HANSEN, J. BOONE										
				_	Sample				Ę.		At	tter, Gradation				sts		
Elev. (ft)	Dept/ (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	Material Description		Dry Dens (pcf)	Moisture Content (Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%	Other Tox		
95 -			X	18	Pushed <i>T 0.73</i>	CL	brown, moist, stiff		91.4	25.2	48	27				C		
đ							LEAN CLAY											
- 90 - -	- 45-	0.00	12.4.1															
-	50-	0.00	1.1.1.1.1.1.1.															
85 —		2000		16 1	8,41,90,(99+)	GM	brown, very moist, very dense			6.5		NP	54	29	17			
	- 55-	2000	5-1-1-2				SILTY GRAVEL W/SAND clay seams											
'80 — -			20142-21															
	60	200.00	1.4.4.	15 3	35.55.55.(91)	GM	red-brown, very moist, very											
		00.5	4				BOH									-		
-																		
770 —	- 65 -																	
	- 70	-																
765 — -																		
- 760	75-	-																
		-			0							Į.						
							LECEND.		untoer	6"		OTHE	RTES	ITS	_			
F	2]	B	8	Z	G	2" 0	DD Split Spoon (SPT) Split Spoon Sample	6) (N1)60 Va Torvane Pocket I With Lin	alue (tsf) Penetroi iers	meter (i	sf)	UC = CT = 0 DS = UU = CU =	Uncon Conso Direct Uncon Conso	fined (lidation Shear solidat	Compr i ed, Ur I, Undi	essi ndra raine		

CLIEN LOCA DRILL	NT: <u>S</u> ATION: LING M				I CITY 9.980669, 96-CME-55	LON: W - 5 / N.W. C	111.811226 (SEE S ASING TO 40'	ITE PLAN)	PROJEC DATE S DATE C GROUN	CT NU TART OMP	JMBE ED: LETE EVAT	R: 2 1 D: 1 10N	2014 1/10 1/1	01.0 0/14 1/14 836	034		
DEPT		WAT	ER	- IN	IITIAL: 🟆	N.M.	AFTER 24 HO	URS: ¥ 45.7'	LOGGE	DBY	M. 1	HAN	ISE	N, J.	. BO	ONE	
	1	1	1	Sample						2		At	ter.	Gr	5		
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	Ma	terial Description		Dry Densit (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	Other Test
4835 -	-	1	X	17	8,16,25,(87)	CL	It. brown, moist to slightly moist	SANDY LEAN CLAY W/GR	AVEL								
- - 4830 —	5-	0.0	X	17	22,37,41,(99+;	ML GP-GM	brown, moist brown, slightly moist, very dense	SILT W/SAND slight pinhole structure		-	20.4		NP	1	24	75	
- - - 4825 —	- 10-			14	43,50,55,(99+)	GP-GM	brown, moist, very dense										
- - 4820 — -	- 15-		X	13	23,28,30,(80)	GP-GM	brown, moist, very dense	GRAVEL W/SILT & SAND possible cobbles			6.6		NP	51	41	8	
- - 4815 –	20-		X	12	25,27,35,(72)	GP-GM	brown, moist, dense										
- 4810 —	25-	200000	X	13	25,25,31,(59)	GP-GM	brown, moist, dense										
- 4805 -	30-	De la		18	Pushed T 0.44	CL-ML	It. brown, moist	SANDY SILTY CLAY	***	100.2	21.9	26	7				C-
- 4800 – -	35	111 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		14	T 0.29 3,8,22,(27)	CL-ML GP-GM	It. brown, very moist, firm It. brown, very moist, med. dense	GRAVEL W/SILT & SAND									
	-	0						SANDY SILT									
F	21	3	8	V	G	2" (DD Split Spoon (SPT)	ND: split Spoon Sample 2,3,2(6)- 70.45 PP 2.0	 Blow Co (N₁)₆₀ V Torvane Pocket With Lin 	ount per alue e (tsf) Penetro	o" meter (tsf)	UC = CT = DS = UU =	Uncor Conso Direct Uncor	nfined blidatio Shear nsolida	Compren n ted, Ur	ession
PRO		SANT				DJECT			20			SHE	ET	2 0	F 2		
-----------------------	---------------	----------	-------------------	---------------------	------------------	---	----------------------------------	-------------------------	----------------------	--------------	--------------------------------------	--	---	----------------------------------	--------------------------		
CLIEN	NT: SA	NTA	QUI	N CITY	JUDATIA	P	ROJEC	T NU	MBE	R: 2	2014	01.0)34				
LOCA	TION:	LAT	: N 3	9.980669.	LON: W	111.811226 (SEE SITE PLAN)	DATE S	TART	ED:		1/10	0/14					
DRILL		ETHO	DD:	96-CME-5	5 / N.W. C	ASING TO 40'	ATE C	OMPI	ETE	D: _	1/1	1/14					
DRILL	_ER: _T	. KEI	RN				ROUN	D ELI	EVAT	ION	:_~4	836	.0'	_	_		
DEPT	н то и	VATE	R-I	NITIAL: 🗵	N.M.	AFTER 24 HOURS: ¥ 45.7'	OGGE	D BY:	Μ.	HAN	ISE	N, J.	BO	ON	<u> </u>		
		>	_	Sampl	e			ity	a%	At	ter.	Gra	adati	on	sts		
Elev. (ft)	Depth (ft)	Litholog	Type Rec. (in)	See Legend	USCS (AASHTO)	Material Description		Dry Dens (pcf)	Moistur Content (Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%	Other Te		
1795 — -			11	Pushed T 0.30	ML	brown, very moist		99.6	22.9		NP	0	38	62	СТ		
- - 1790 —	45- ¥		18	1,2,3,(4) T 0.34	ML	SANDY SILT											
- - - 1785	50-		18	1,3,3,(5) T 0.20	CL-ML	pink-brown, wet, soft SILTY CLAY											
- - 4780 — -	55-		18	Pushed T 0.45	CL	It. brown, moist, firm		90.4	32.4	35	13				Cī		
- - 4775 —	60-		18	T 0.20 1,3.9.(9)	CL SM	It. brown, moist, soft brown, wet_looseSILTY SAND BOH											
- - 4770 — -	65-																
- - 4765 —	70-																
	75-																
1760 — - -																	
		_	4			LEGEND: 2.3.2.76)-	Blow Cou (N1)eo Va	int per	6"		OTHE	RTES	fined (Compre	essio		
F					2" (2.5	DD Split Spoon (SPT) Split Spoon Sample	Torvane Pocket P With Line	(tsf) enetroi ers	meter (tsf)	CT = DS = UU = CU = Chem	Conso Direct Uncon Conso n = pH Chl	lidation Shear Isolida Iidateo , Resis oride	ted, Ur I, Undr stivity, S	drain ainec Sulfal		

PRO	FCT.	SAN					DJECT							SHE	ЕТ	1 0)F 2
CLIEN	NT: S/	ANT	AQ	UIN	I CITY	JUNIN			PROJE	CT NL	IMBE	R: 2	2014	01.0	034		
LOCA	TION:	LA	T: N	1 39	.978462,	LON: W -	111.813588 (SEE S	ITE PLAN)	DATE S	TART	ED:	9	1/1	1/14		_	
DRILL		ETH	IOD): 9	96-CME-55	/ N.W. C	ASING TO 13.5'		DATE C	OMP	LETE	D: _1	1/1	1/14			
DRILL	ER:	<u>г. к</u>		N					GROUN	D ELI	EVAT	ION	:_~4	874	.0'		_
DEPT	нто	NAT	ER	- IN	IITIAL: 🖳	DRY'	AFTER 24 HO	URS: ¥ <u>N.M.</u>	LOGGE	D BY:	<u>M.</u>	HAN	ISE	N, J	BO	ON	E
					Sample					£		At	ter.	Gr	adati	on	t,
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	Ма	terial Description		Dry Dens (pcf)	Moisture Content (Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	Other Tec
-	-		X	17	8,8,7,(32)	CL-ML	brown, moist to dry	SANDY SILTY CLAY									
- 1870 — -		000	X	7	Pushed PP>4.5	CL-ML	brown, dry, hard				1.6	26	6				
-	-			12	10, 19, 40, (99+)	GP-GM	brown, moist, very dense	GRAVEL W/SILT & SAND									
4865 — - -	10-			11	10,12,10,(40)	SM	brown, moist, dense				21.3		NP	0	60	40	
- - 1860 —	-			10	7,7,7,(22)	SM	brown, moist, med. dense	SILTY SAND				0					
-	15			15	6,4,4,(11) <i>T 0.25</i>	SM CL	brown, moist brown & red-brown, moist, firm	LEAN CLAY									
- 1855 — - -	20-			16	Pushed T 0.50 T 0.89	CL-ML	red-brown, very moist, stiff	SILTY CLAY		100.4	25.6	25	5				C1 UL 558 ps
- 4850 — -	25-			17	<i>T 0.46</i> 4,8,14,(25)	CL-ML SM	red-brown, moist, firm brown, moist, med. dense										
- - 1845 —	30-					SM	brown moist	SILTY SAND clay lenses & layers									
	-		X	9 13	Pushed 3,12,19,(26)	ML ML	brown, moist brown, moist, med. dense										
 4840 — -	35-							SILT W/SAND			24.4		NIC	0	24	70	
	-			12	6,14,15,(27)	ML SM	brown, very moist brown, very moist, med. dense	SILTY SAND			24.4			U	21	19	
4835 —								ND	Blow Co	unt nor	6"		ОТН	RTE	STS		
Г	T	2	0		C	2" (DD Split Spoon (SPT) S	2,3,2,(6)	- (N1)60 Va	alue (tsf)			UC = CT =	Uncon	lidation	Compr 1	essio
	(ł	$\boldsymbol{\prec}$	X	\mathbf{V}	ГТ		pp	PP 2.0	Pocket F	Penetro	meter (tsf)	DS = UU =	Direct Uncor	Shear	ted, Ui	ndrai
			C	$\mathbf{\lambda}$		2.5	" OD Split Spoon			0.0			CU =	ບonso . = n⊢	лиаteo I. Resis	a, UNDI Stivity	anne Sulf

PRO	JECT:	SAN	ITA	QU	IN (WEST)	CDA PRO	DJECT							SHE	ET	2 0	2
CLIE	NT: S	ANT	AQ	UIN	CITY				PROJE	CT NI	JMBE	R: 2	2014	01.0	034		_
LOCA	TION	LA	T: 1	N 39	9.978462,	LON: W -	111.813588 (SEE S	ITE PLAN)	DATE S	TART	ED:	1	1/1	1/14	-	-	
DRIL	LING N	IETH): (96-CME-55	5 / N.W. C	ASING TO 13.5		DATE C	OMP	LETE	D: _1	1/1	1/14		-	-
DRIL	LER:	<u>T. K</u>		N					GROUN	ID EL	EVAT	ION	~4	1874	1.0'	0.1	-
DEPT	НТО	WAT	ER	- IN		DRY'	AFIER 24 HO	UKS: <u>¥</u> <u>IN.M.</u>	LUGGE	UBI	<u>M.</u>		ISE	N, J	adati		-
		Ŋ	-		Sample					nsity)	ure t (%)	nit	× i	(9		(%)	ests
Elev. (ft)	(ft)	Litholc	Type	Rec. (in)	See Legend	USCS (AASHTO)	Ma	terial Description	0.4	Dry De (pcf	Moist	Liquid Lir	Plast. Ind	Gravel (%	Sand (%	Silt/Clay (Other T
				12	17,19,18,(33)	SM	brown, moist, dense	SILTY SAND									
1830 -	- 45-			4	9,8,7,(13)	ML	brown, moist, med. dense	SILT W/SAND very slightly plastic									
4825 -	50-			16	5,8,26,(25)	CL	brown, moist	SANDY LEAN CLAY gravels in bottom of sample	÷.								
2	-							ВОН									
4820 -		1															
-020	55-																
4815 -																	
	60 -																
1.1																	
4810 -																	
	65 -	-															
4805 -	-																
9	- 70-																
		1															
-	-																
4800 -	-																
	75-	1															
	-																
4795 -	-				100												
F	21	3	8	V	G	2" 0	DD Split Spoon (SPT)	ND: 2,3,2,(6)- Split Spoon Sample 70.45 PP 2.0 PP 2.0	Blow Co (N ₁) ₆₀ V Torvane Pocket I With Lic	unt per alue (tsf) Penetro	6" meter (tsf)	OTHE UC = CT = DS = UU =	R TE Uncor Consc Direct Uncor	STS Infined (Didation Shear Isolida	Compre	ssior

PROJ	JECT:	SANT	AQ	UIN (WEST)	CDA PRO	DJECT		1					SHE	ET	10	F 1
CLIEN	NT: <u>S</u>	ANTA	QUI	N CITY				PROJE	CT NL	JMBE	R: _2	2014	01.0	034		
LOCA	ATION:	LAT	N 3	39.975393,	LON: W	111.813046 (SEE SITE PLAN)		DATE S	START	ED:	1	11/1:	2/14		-	_
DRILI	LING N	IETHO	D:	96-CME-55	5 / N.W. C	ASING TO 11', N.Q. CORE		DATE C	COMP	LETE	D: _	11/1:	3/14			_
DRILI	LER:	T. KEI	RN,	S. CHAFFI	N			GROUN	ID EL	EVAT	ION	: ~4	919	0.0'	200	-
DEPT	н то	WATE	R - I	NITIAL: ¥_	DRY'	AFTER 24 HOURS: ¥ N.	M	LOGGE	DBY	<u>M.</u>	HAN	ISE	N, J.	BO	ONE	-
		2	-	Sample	1				sity	e %	At	ter.	Gr	adati	on	sts
Elev. (ft)	Depth (ft)	Litholog	Rec. (in)	See Legend	USCS (AASHTO)	Material Desc	cription		Dry Den (pcf)	Moistu Content	Liquid Lim	Plast. Inde	Gravel (%	Sand (%)	Silt/Clay (9	Other Te
	-		16	6 7,30,23,(99+)	CL GM	brown, moist SANDY LE gray, slightly moist	AN CLAY									
- - 4915 —		000000	1:	5 49,60/6"	GM	gray, slightly moist, very SILTY GRA clay layers,	VEL W/SAND possible cobbles	5		4.2		NP	49	30	21	
-	- 5-	0.00	15	5 30,40,40,(99+	GM ML	black-gray, slightly moist It. gray, slightly moist, very dense SILT			-							
4910 —	10-		16	5 12,28,20,(81)	ML	yellow-brown, moist, hard SILT W/SA	ND			14.2	21	2				DS
-			- 0	30/0.25"		no recovery-										
4905 —	15-			Coro					156.9	0.1						UC 12,5
			26	88,48	31	gray, dry, hard rock										ps
4900 —	20-		16	Core 26,12		gray, dry, hard rock										
- - 4895 —				Coro		LIMESTON interbedded mudstone/d	E d w/very highly we laystone layers	eathered								
	25-		16	26,8		gray, dry, hard rock			162.1	0.1						UC 14,5 ps
- 4890 — -	30-		64	Core 106,64	•	gray, dry, hard rock										
- - 4885 – -	35-		37	7 Core 69,27	÷	gray, dry MUDSTON very highly	E/CLAYSTONE weathered		4							
-	-	3.5				BOH										
) T				2" (LEGEND: DD Split Spoon (SPT) Split Spoon Sar	nple 2,3,2,(6)	Blow Co (N1)60 V Torvane	ount per alue e (tsf)	6"		OTHE UC = CT =	R TES Uncon Conso	STS fined (lidation	Compre	assion
F N	J IGIN) FFR			2.5	' OD Split Spoon DD Split Spoon Thin-Walled T		With Lir	ers	meter (UU = CU = Cherr	Uncon Consc i. = pH Chl	solidated lidated Resis	:ed, Un I, Undra stivity, \$	drained ained Sulfate

DRI	LLI	HOL	E L	OG				-		BC	RI	NG	6 N	0.	14	-5
PROJ	ECT:	SAN	TAQUI	N (WEST	CDA PRO	DJECT			OT N		D : 1	044	SHE	ET	1 0	F 1
CLIEN				CITY		111 014000 (SEE				ED. IWRF	R: 2	2014	01.0 2/17	134	-	_
	ING A			6 CME-5		ASING NO COR		DATE		ED.	D· 1	1/1:	3/14			
	FR		RN S	CHAFE!	N	ASING, N.Q. CON		GROUN		EVAT	ION	: ~4	954	.0'		
DEPT	HTO	WATE	R - IN	<u></u> ITIAL: ⊻	DRY'	AFTER 24 H	OURS: Y N.M.	LOGGE	DBY	M.	HAN	ISEI	٧, J.	во	ONE	Ξ
				Sample	9				>		At	ter,	Gra	adati	on	S
Elev. (ft)	Depth (ft)	Lithology	Type Rec. (in)	See Legend	USCS (AASHTO)	N	laterial Description		Dry Densit (pcf)	Moisture Content (%	iquid Limit	last. Index	sravel (%)	Sand (%)	lt/Clay (%)	Other Test
_	-	6.7.9%	4	6,8,50/1"	CL	brown, dry	SANDY LEAN CLAY W/GF	AVEL	-			<u> </u>	0	-	S	
-			18	7 0.33 Core 79,24	4	gray, dry, hard rock										
4950 — - -	5-		54	Core 100,0	÷	gray, dry, hard rock										
- 4945 — -	10-		41	Core 68,38	é	gray, dry, hard rock			168.3	0.1						11,38 psi
- 4940 — - -			8	Core 14,11	÷	gray, dry, hard rock	LIMESTONE									
- 4935 — - -	20-		48	Core 80,54	- 6	gray, dry, hard rock	very highly fractured, some nodules, many soft layers v recovery, likely very highly weathered mudstone wash many fractures w/white-yell calcareous carbonate coati	chert v/no ing away, ow ng	163.8	0.2						UC 17,2: psi
- 4930 — - -	25-		47	Core 78,62	÷	gray, dry, hard rock										
- 4925 — - -	30-		12	Core 20,0		gray, dry, hard rock										
4920 — - -	35 -		40	Core 94,40		gray, dry, hard rock	DOLI		163.2	0.1						UC 12,27
- - 4915 —																-pai
		-		~	_	LEG	END:	Blow Co	ount per /alue	6"		OTHE UC =	R TES	fined C	ompre	ession
F	L IGIN	S EER	EX	G, INC.	2" (2.5 3" (DD Split Spoon (SPT) " OD Split Spoon DD Split Spoon	Thin-Walled Tube Sample	Torvan Pocket With Li Torvan Pocket	e (tsf) Penetro ners e (tsf) Penetro	meter (meter (tsf) tsf)	DS = UU = CU = Chem Hyd.	Direct Uncon Consc 1. = pH Chl = Hydr	Shear solidated didated , Resis oride ormeter	ed, Ur , Undr livity, S	ndraine ained Sulfate

Test Pit Logs

	NT: S	ANT	AQI	UIN	CITY			PROJ		JMBE	R: 2	2014	01.0	034		
	TION	LA	T: N	1 39	.97683,	LON: W	111.81422 (SEE SITE PLAN)	DATE	START	ED:	1	1/15/	/15			
EXCA	VATIO	ON MI	ETH	HOD	CASE	580 BAC	KHOE	DATE	СОМР	LETE	D: 1	1/15/	/15			
OPER	ATOR	R: N/	4					GROU	ND EL	EVAT	ION	: ~4	1900	0.0		
DEPT	нто	WATI	ER	- IN	ITIAL: ¥	DRY'	AFTER 24 HOURS: ¥ N.M.	LOGG	ED BY	J.E	300	NE	_			_
					Sampl	e			<u>₹</u>		Att	ter.	Gr	adat	ion	ţ
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	Material Descriptio	n	Dry Dens (pcf)	Moisture Content ('	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%	Other Tee
ĩ							Organics in top 8"									
	2 -															
	- 3 -		X		Bulk T 0.45	CL	gray-brown, moist, firm		86.2	23.5	33	11				
	4 -						LEAN CLAY sand lenses, very sligh structure	nt pinhole								
95 —	5-															
-	6 -		X		Bulk T 0.72	CL	lt. red-brown, moist stiff		90.3	26.4	30	9				С
	7 -															
1	8 -															
1	9 -		No. of the other o													
90 —	10-				Bulk	GC-GM	brown, slightly moist, dense SILTY CLAYEY GRAV few cobbles	/EL W/SAND								
-	11 -	0.0.0				GM	brown, slightly moist, SILTY GRAVEL W/SA	ND								
	12 -	9.9.fc	1.16				BOH			2	-					-
r					$\overline{\mathbf{C}}$			Sample Type				OTH UC =	ER TE	STS	Com	ores

PROJ	ECT:	SAN			N (WES	T) CDA PF	ROJECT			CT N	IMPE	D. /	0044	SHE	ET	10	F
					07700	LON-W	111 81354 (SEE 9				ED.		1/15	ют. /15	134	-	-
			ETH	100	CASE	E 580 BAC	CKHOE		DATE		LETE	D: -	/15	/15	_		
OPER		R: N/	4		0.101				GROUN	ND EL	EVAT	ION	: ~4	1878	.0		~
DEPT	HTO	WAT	ER	- IN	TIAL: 1	DRY'	AFTER 24 H	HOURS: Y N.M.	LOGGE	ED BY:	J.E	300	NE				-
					Sampl	e				A	()	At	ter,	Gr	adati	on	
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)		Material Description		Dry Densi (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	
	1 -		X		Bulk T 0.40	CL	dk. brown to brown, very moist, firm	Organics in top 8" LEAN CLAY		98.7	19.8						
- 75 -	2 - 3 - 4 -	00000000	V VI J. C		Bulk	GM	brown, slightly moist, very dense	SILTY GRAVEL W/SAND few cobbles, very slightly pla	astic	120.0	2.7			59	25	16	
	5 6 7				Bulk T 0.99+	CL	brown, slightly moist, very stiff	LEAN CLAY sand lenses, blocky		103.7	17.1	31	9				
- 70	- 8 - 9 - 10-				Bulk	GP-GM	brown, slightly moist, dense	GRAVEL W/SILT & SAND cobbles, sand layers									
	11 -		the Constant of the Constant		Bulk	GP-GM	brown, slightly moist, dense										
65 —	13 -	10.[179		-				ВОН		-	-	-	-				-
													-				
F	U	B	8	X	G		LEGEND: DISTURB	ED SAMPLE	Sample Type Torvane (tsf)		1		OTH UC = CT = DS = UU = CU =	ER TE Unco Cons Direc Unco Cons = Unco	STS nfined olidation t Shear nsolid olidate	I Compon ar ated, I ated, Un	ore Uni Idra

PRO	ECT:	SAN	ITAQU	IN (WES	T) CDA PF	ROJECT							SHE	ET	10	F 1
CLIE	NT: S	ANT	AQUIN		11			PROJEC	CT NU	JMBE	R: 2	2014	01.0	034		
LOCA	TION:	LA	T: N 39	9.97944,	LON: W	-111.81416 (SEE	SITE PLAN)	DATE S	TART	ED:	1	1/15/	15			
EXCA	VATIO	ON M	ETHO	D: CASE	E 580 BAC	KHOE		DATE C	OMP	LETE	D: _	1/15/	15		_	
OPER	ATOR	8: N	A					GROUN	D ELI	EVAT	ION	: ~4	867	7.0	_	
DEPT	н то	WAT	ER - IN	NITIAL: 🛛	DRY'	AFTER 24	HOURS: X N.M.	LOGGE	D BY:	J. E	300	NE				
	-	-		Sampl	le				~		At	ter.	Gr	adat	ion	y.
Elev. (ft)	Depth (ft)	Lithology	Type Rec. (in)	See Legend	USCS (AASHTO)		Material Description		Dry Densit (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	Other Test
5							Organics in top 8"									
- 865	2 -			Bulk T 0.31	CL	dk. brown, moist, firm	LEAN CLAY pinhole structure, blocky		89.6	24.9						
1	- 3 -			Bulk T 0.80	CL	gray-brown, moist, stiff			89.4	13.1	28	9				C.
	4 -	0.00	1.0		GP-GM	brown, slightly moist	GRAVEL W/SILT & SAND									
	- 5-			T 0.92	CL	brown, moist, stiff	LEAN CLAY no pinhole structure							×.		
	6 -				SM	red-brown, moist	SILTY SAND									
860 –	7 -	0) 0 0 0		Bulk	SP	brown, moist, dense	SAND W/GRAVEL small size gravel layers		115.7	5.3		NP	27	69	4	
	- 8 -	0.000														
	9 -			Bulk	GP-GM	brown, moist, dense	GRAVEL W/SILT & SAND no cobbles									
	- 11 -	0000														
355 -	- 12 -			Bulk	SM	brown, moist	SILTY SAND W/GRAVEL clay layers to 3" thick									
	- 13 -						вон		-				-	-21		-
						LEGEND	<u>н</u>	_	_	2	-	OTH	ERTE	STS		
F	S	B	8	G		DISTUR	BED SAMPLE Bucket Sector S	ample Type Torvane (tsf)				CT = DS = UU = CU =	Direct Unco	onine olidati ot She onsolic solidat	a com ion ar Jated, ed, Ur	Und Und

TES	ST F	PIT	LC	C				7	Т	EST	P	IT	NC). 1	5-	04
PROJ		SA			IN (WES	T) CDA PF	ROJECT		CT M	IMPE	p. /	0014	SHE	ET	10	F 1
					98101	LON. W	111.81406 (SEE SITE PLAN)	DATES	START	ED:	N. 4	/15/	15	-04	_	
EXCA	VATIO		NET	HOL	CASI	E 580 BAC	CKHOE	DATE	COMP	LETE	D: 1	/15/	15			
OPER	RATOF	R:	NA.		-			GROUI	ND EL	EVAT	ION	-4	858	0.0		_
DEPT	н то	WA	TER	- IN		DRY'	AFTER 24 HOURS: ¥ N.M.	LOGGE	D BY	<u>J. B</u>	00	NE				_
					Samp	e			Į.		At	ter.	Gr	adati	ion	sts
Elev. (ft)	Depth (ft)	Litholog	Type	Rec. (in)	See Legend	USCS (AASHTO)	Material Description		Dry Dens (pcf)	Moistur Content (Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%	Other Te
	- 1 -			N	Bulk T 0.45	SM	brown, moist SILTY SAND		105.8	14.3		NP	0	59	41	
4855 —	- 3 -				Bulk	ML	brown, slightly moist, med. dense SANDY SILT		93.9	5.9		NP	0	37	63	
	- 6 -				Bulk	ML	brown, slightly moist, med. dense		94.9	17.8						
4850 —	- 8 - 9 - 10-				Bulk	ML	SANDY SILT clay layers, increasing w/dept brown, slightly moist, med. dense	h								
4845 —	- 11 - - 12 - - 13 -				Bulk	CL	brown, moist, stiff LEAN CLAY interbedded w/silty sand layer	'S								
	14	1	2				2011									-
	14 .						ВОН									
	11															
F		B	8 RII	X NG	G , INC.		UNDISTURBED SAMPLE	imple Type orvane (tsf)			1	OTHE UC = CT = DS = UU = CU = HYD SS = DC =	R TE Unco Direc Unco Cons = Hyc Solut Dispo	STS onfinect olidati t Sheat onsolid olidate frome ole Sal ersive	l Com on lated, lated, Un ter t Clav	pressi Undra draine

	NT: <u>S</u> TION: VATION			JIN 39	CITY .97750, CASE	LON: W	-111.81158 (SEE SITE PLAN)	PROJE	CT NU START	JMBE ED: LETE	R: 2 1 D: 1	2014 /15/ /15/	01.0 15 15	034		
		(: <u>N/</u>	R.	. IN		DRY	AFTER 24 HOURS: V N M	LOGGE	DBY	LVAI	300	NE	000	.0		-
					Sampl	le					Att	er.	Gra	adati	on	s
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	Material Description		Dry Densit, (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	Other Test
	1 -		X		Bulk 7 0.53	CL	Organics in top 6" LEAN CLAY brown, moist, stiff									
355 —	3 -		X		Bulk T 0.67	CL-ML	lt. brown, slightly moist to moist, stiff		89.9	6.6						
-	- 5 6 - 7 -		X		Bulk T 0.75	CL-ML	lt. brown, slightly moist to moist, stiff		93.1	9.7	20	4				Pero Tes
350 — -	- 8 - 9 - 10		X		Bulk 7 0.60	CL-ML	SILTY CLAY W/SAND pinhole structure, decreasing v lt. brown, moist, stiff	v/depth		9.7	26	6				
- 945 —	- 11 - 12 - 13 -		X		Bulk T 0.81	CL-ML	lt. brown, moist, stiff									
	- 14 -	225					ВОН									

PROJ	ECT:	SAN			N (WES	T) CDA PF	ROJECT			۲ م	ES			SHE	J. 1	1 0	U U F 1
	IT: <u>S</u> TION: VATION	<u>ANT/</u> LA DN M	<u>AQ</u> <u>T: N</u> ETI	UIN N 39 HOE	CITY 9.97920, 9: CASI	LON: W	-111.81143 (SEE S CKHOE	SITE PLAN)	DATE S DATE C GROUN	CT NU STAR1 COMP	jmbe 'Ed: Lete Evat	R: D: 10N	2014 1/15/ 1/15/ : ~4	01.0 /15 /15 /15	2.0		
DEPT	нто	WAT	ER	- IN	ITIAL: 🛛	DRY'	AFTER 24 H	IOURS: Y N.M.	LOGGE	D BY	J. E	300	NE				
					Samp	e				ity	(%	At	ter,	Gra	adati	ion	ş
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)		Material Description		Dry Dens (pcf)	Moisture Content (Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%	Other Te
	1 -	00000	1.4.4.1.1.1.4.4.			GM	brown, very moist, loose	Organics in top 6" SILTY GRAVEL W/SAND									
4840 —	2 -				T 0.39	CL	brown, slightly moist, firm	LEAN CLAY									
	3 -		X		Bulk T 0.57	CL-ML	It. brown, slightly, moist to moist, stiff			90.2	10.3						
-	5-				Bulk T 0.65	CL-ML	lt. brown, moist, stiff	SILTY CLAY W/SAND very slight pinhole structure		88.3	12.5	24	6				Perc Tes
4835 —	7 -		XXXXXXXX														
	8 -		ALLE														
-	10-		X		Bulk T 0.80	CL	brown, slightly moist, stiff				14.7	30	10				
	11 -							LEAN CLAY									
4830 —	12 -		X		Bulk T 0.83	CL	brown, slightly moist, stiff										
	14 -	0.0.0	4.7.4 0. 1			GM	brown, moist	SILTY GRAVEL W/SAND very slightly plastic BOH									
	1.1					h											
F	U	B	8	X	G		LEGEND: DISTURB	ED SAMPLE Bucket S 0.45	ample Type Forvane (tsf)				OTH UC = CT = DS = UU = CU =	ER TE Unco Cons Direc Unco Cons	STS onfined olidati t Shea onsolid solidat	d Com ion ar lated, ed, Ur	press Undra ndrain

CLIENT LOCAT EXCAV	CT: <u>S</u> 10N: VATIO	SAN ANTA LAT		UIN (WES IN CITY 39.98147 DD: CAS	T) CDA PI LON: W E 580 BAC	ROJECT -111.81089 (SEE SITE PLAN) CKHOE	SHEET 1 OF 1 PROJECT NUMBER: 201401.034 DATE STARTED: 1/15/15 DATE COMPLETED: 1/15/15
OPERA		2: <u>N</u> /	-0				GROUND ELEVATION: <u>~4831.0</u>
DEPTH	10	WAI	=R -	INITIAL: -			Atter. Gradation
Elev. D (ft)	Depth (ft)	Lithology	Type Dec /in/	See Legend	USCS (AASHTO)	Material Descri	Dry Density (pcf) Moisture Content (%) Gravel (%) Silt/Clay (%)
830 —	1 - 2 -			T 0.40	CL	Organics in top 6" brown, very moist, firm LEAN CLAY	
-	3 - 4 -		X	Bulk T 0.55	CL-ML	lt. brown, slightly moist, stiff	92.6 6.1
- 825	5 6 7 -		X	Bulk T 0.57	CL-ML	It. brown, slightly moist, stiff SILTY CLAY W/S/ slight pinhole struc	91.6 15.5 27 7 Pe Te Cture
	8 - 9 - 10-		X	Bulk T 0.79	CL-ML	lt. brown, moist, stiff	
520 —	11 - 12 - 13 -			Bulk	GC-GM	brown, slightly moist, very dense SILTY CLAYEY G	6.5 23 6 56 17 27
-	14 -					ВОН	

PRO	ECT:	SAN	TAOL	JIN (WES	T) CDA PF	ROJECT					_		SHE	ET	1 0	F
CLIEN	NT: S	ANTA		N CITY				PROJE	CT NU	MBE	R:_2	2014	01.0)34		
LOCA	TION:	LAT	Г: N 3	9.98200.	LON: W	-111.80930 (SEE S	SITE PLAN)	DATE S	TART	ED:	E	1/15/	15			
EXCA	VATIC	N M	ETHO	D: CASI	E 580 BAC	CKHOE		DATE	OMP	ETE	D: _	1/15/	15			
OPER	RATOR	: N/	4					GROUN	ID ELI	EVAT	ION	: ~4	1867	.0		
DEPT	н то	WATI	ER - II		DRY'	AFTER 24 H	IOURS: ¥ N.M.	LOGGE	DBY	J.E	300	NE				
				Samp	le				<u>₹</u>		At	ter.	Gra	adati	on	I.
Elev. (ft)	Depth (ft)	Lithology	Type Rec. (in)	See Legend	USCS (AASHTO)		Material Description		Dry Densi (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	F TO
					CL-ML	dk. brown, very moist	SILTY SAND CLAY organics									
1865 —	- 1 -			Bulk	GP-GM	brown, moist, dense	GRAVEL W/SILT & SAND		121.5	7.0		NP	65	29	6	
	- 3 -		X	Bulk <i>T 0.6</i> 6	ML	brown, slightly moist, stiff	SILT plastic, pinhole structure		91.2	15.2	35	9				
	- 5-															
	6 -			Bulk	GP	grav-brown, moist, loose			113.1	5.0						
4860 —	- 7 -					g.c.,	GRAVEL W/SAND									
	- 8 -	0000000														
	- 9 -			D		any brown maint facts										
		000		Bulk	GP	gray-drown, moist, 10050										
	10-	-0.0					ВОН									
1								-								
F	21	3	81	CG		LEGEND: DISTURB		ample Type Torvane (tsf)				OTH UC = CT = DS = UU =	ER TE Unco Cons Direc Unco	STS onfined olidation t Sheat onsolid	i Compon on ar lated, l	pres Unc

PROJ	ECT:	SAN	TAQ	UIN (WES	T) CDA PR	ROJECT						SHE	ET	1 0	F 1
CLIEN	NT: S/	ANTA	QU	IN CITY			PROJE	CT NU	JMBE	R: 2	2014	01.0)34		
LOCA	TION:	LAT	r: N :	39.98130,	LON: W	111.80850 (SEE SITE PLAN)	DATE S	TART	ED:	1	/15/	15	_		_
EXCA	VATIO	N M	ЕТНО	DD: CAS	E 580 BAC	CKHOE	DATE C	OMP	LETE	D: _1	/15/	15			
OPER	RATOR	: <u>N</u> /	1				GROUN	ID EL	EVAT	ION	~4	874	.0		-
DEPT	'H TO \	NATE	ER -	INITIAL:	Z DRY	AFTER 24 HOURS: V.M.	LOGGE	DBY	: <u>J. E</u>	800	NE	_		-	-
		2	-	Samp	le			sity	e (%	At	ter.	Gra	adati	on G	sta
Elev. (ft)	Depth (ft)	Litholog	Type Dec /in/	Legend	USCS (AASHTO)	Material Description		Dry Den (pcf)	Moistu Content	Liquid Lim	Plast. Inde	Gravel (%	Sand (%)	Silt/Clay (%	Other Te
						Organics in top 4"									
	- 1 -			Bulk <i>T 0.79</i>	CL	It. red-brown, moist, stiff		94.2	19.6	27	8				Prod CB
870 —	- 3 -		X	Bulk T 0.38	ML	gray-brown, slightly SILT moist, firm very slight pinhole structure			19.6		NP	0	1	99	
	- 5			T 0.63	CL	brown, moist, stiff LEAN CLAY									
	- 6 -			Bulk	ML	gray-brown, slightly moist SILT W/SAND		104.4	17.7						
- 865 —	- 8 -			Bulk T 0.90	CL	LEAN CLAY blocky red-brown, moist, stiff		-							
	10-				SM	brown, moist SILTY SAND									
	- 11 -	2 <u>1</u> 2 12				ВОН									
_	-	_				LEGEND:	-			-	ОТН	ER TE	STS		
F	R	3	8	ζG		DISTURBED SAMPLE	ample Type Torvane (tsf)				UC = CT = DS = UU = CU =	Unco Cons Direc Unco	onfined olidati t She onsolid solidat	ar I Com ar Iated, ed, U	pres Und ndrai

PROJ	ECT:	SAN	TAQL	JIN (WES	T) CDA PF	ROJECT		_					SHE	ЕТ	1 0	F
CLIEN	IT: <u>S/</u>	ANTA	QUIN	N CITY				PROJE		JMBE	R: _2	2014	01.0)34	-	_
LOCA	TION:	LAT	: N 3	9.98056,	LON: W	-111.81220 (SEE	SITE PLAN)	DATE S	TART	ED:	-	1/15/	15			_
EXCA	VATIO	N ME	ETHO	D: CASE	E 580 BAC	CKHOE						1/15/	15	0	-	-
OPER	ATOR	: <u>N</u> A			DOV	AETER 24						NE	1003	.0	-	-
DEPT		VATE	_R - II	Samn	e	AI 1EI 24				0.0	At	ter.	Gra	adati	on	
Elev. (ft)	Depth (ft)	Lithology	Type Rec. (in)	See Legend	USCS (AASHTO)		Material Description		Dry Densit) (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	
							Organics in top 6"									
	- 1 - 2 -						GRAVEL W/SAND									
4860 —	3 -			Bulk	GP	brown, moist, med. dense			106.7	4.5		NP	62	34	4	
	5-		X	Bulk T 0.99+	CL	brown, slightly moist, very stiff	LEAN CLAY		97.6	8.0	30	9				
-	6 -			Bulk	SP-SM	gray-brown, slightly			95.9	4.5						
	7 -					moisi, meu. dense	SAND WISILT									
4855 —	8 -															
-	9 -	ベイン・イン		Bulk	SM	gray-brown, moist										
	10-	1111					SILTY SAND clay layers to 4" thick									
-	11 -															
	12	21.18					ВОН									
F	U	3	8	G		LEGEND DISTURI	BED SAMPLE	Sample Type – Torvane (tsf)				OTH UC = CT = DS = UU = CU =	ER TE Unco Direc Unco Cons	STS nfined olidation t Sheat nsolid olidate	l Com on ar ated, l ed, Un	ore Un

		SAN			N (WES	T) CDA PF	ROJECT		PROJ		JMBE	R: 2	2014	SHE	034	1 0	- 1
				1 30	97946	LON: W	111.81230 (SF	E SITE PLAN)	DATE	START	ED:		1/15	/15			_
EXCA		N MF	ETH		CASE	580 BAC	KHOE		DATE	COMP	LETE	D: -	1/15	/15			
OPER	RATOR	: NA	Δ						GROU	ND EL	EVAT	ION	: ~4	1862	2.0		
DEPT	HTO	WATE	ER	- INI	ITIAL: 🗵	DRY'	AFTER 2	4 HOURS: Y N.M.	LOGG	ED BY	J. E	300	NE				
	12-5-54				Sampl	е				2		At	ter.	Gr	adat	ion	9
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)		Material Description		Dry Densit (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	Other Teed
	1 -					CL-ML	dk. brown, moist	Organics in top 6" SANDY SILTY CLAY									
60 -	2 -					CL	brown, moist, stiff										
	- 3 -				Bulk	CL	brown moiet stiff			95.4	24.9	32	9				
	- 4 -				T 0.73		uruwn, muist, sun										
	- 5-							LEAN CLAY sand lenses & layers, increa w/depth	sing								
2	- 6 -				Bulk T 0.70	CL	brown, moist, stiff			97.8	23.8						
55 –	- 7 -																
	8-																
	9-		X		Bulk T 0.81	CL	brown, moist, stiff										
	- 10-							ВОН									
	-		1	-		1	LEGEN	D:	Comela Turi				OTH		ESTS	d Com	ores
F	रा	3	8	X	G		DISTU	RBED SAMPLE	Torvane (tsf)			CT DS UU CU	= Cons = Dire = Unc = Cons	solidat ct She onsolia solidal	ion ar dated, ted, Ur	Und

TES	ST F			G					1	Т	ES1	ГР	IT	NC SHF). 1	5- ²	12
CLIF	NT: S	ANT			CITY	IT GUA PI			PROJE	CT NU	JMBE	R: 2	2014	.01.0)34		
LOCA			T: N	39	.97853,	LON: W	-111.81223 (SEE S	SITE PLAN)	DATE S	TART	ED:	1	/15/	/15			
EXCA	VATIO	ON M	ЕТН	IOD	: CASE	E 580 BAC	KHOE	Marchael Company	DATE C	OMP	LETE	D: _1	/15/	15			
OPER	RATOF	R: N/	A						GROUN	ND EL	EVAT	ION		874	.0		
DEPT	н то	WAT	ER ·	- INI	TIAL: Ÿ	DRY'	AFTER 24 H	HOURS: Y N.M.	LOGGE	DBY	. <u>J. E</u>	300	NE	_			_
			L		Samp	e				Ę.		Att	ter.	Gr	adati	on	sts
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)		Material Description		Dry Dens (pcf)	Moisture Content (Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	silt/Clay (%	Other Te:
		6/6		1		CL	dk. brown, very moist	SANDY LEAN CLAY W/GRA organics	AVEL								
	- 1 -							GRAVEL W/SILT & SAND scattered cobbles									
- 870 —	- 3 -	0.000	and the local day of the local day		Bulk	GP-GM	brown, moist, very dense			123.1	3.1		NP	74	16	10	
	- 5-				Bulk <i>T 0.90</i>	CL	brown, moist, stiff	LEAN CLAY		100.7	19 4						
	6 -		1.0.1.1.0		Bulk	gp-gm/gp	brown, slightly moist, loose			111.2	4.1						
865 —	9 - 9 - 10 -		1. Jacob Martin States States States States States		Bulk	GP-GWGP	brown, slightly moist, loose	GRAVEL W/SILT & SAND T GRAVEL W/SAND	0								
	11 -	000	he You I					ВОН									
-	<u> </u>	1		1	-		LEGEND:					-	OTH	ER TE	STS		roaci
F	C IGIN	B	8 RIN	X 1G	G, INC.		DISTURB	ED SAMPLE	Sample Type Torvane (tsf)				CT = DS = UU = CU = HYD SS = DC =	Cons Direct Unco Cons Cons Hype Solut Disp	oninec olidati it Shea onsolid iolidate tromel ole Sal ersive	i Comp on ar ated, l ed, Un er t Clay	nessio Indrai draine

PROJ	JECT:	SAN			N (WES	T) CDA PF	ROJECT						SHE	ET	10	F 1
	NT: <u>S</u> ATION: AVATIC	LA LA DN M	AQU T: N ETH A	JIN 39 IOD	CITY .97743, : CASE	LON: W	-111.81219 (SEE SITE PLAN) CKHOE	DATE S DATE C GROUN		ED: ED: LETE	r: 2 _1 D: 1 ION:	1/15/ 1/15/	15 15 15 866	6.0		
DEPT	TH TO	WAT	ER ·	- INI	TIAL: ¥	DRY'	AFTER 24 HOURS: 🐺 N.M.	LOGGE	DBY	J.E	00	NE				
					Sampl	e			A		Atl	ter.	Gr	adati	on	v.
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	Material Description		Dry Densi (pcf)	Moisture Content (⁹	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	Other Tee
865 –	- 1 -		N N N N N N N N N N N N N N N N N N N		Bulk T 0.35	CL-ML	SILTY CLAY W/SAND			18.8	23	6				Pro CB
	- 3 -		X		Bulk T 0.47	ML	brown, moist, firm plastic		97.6	25.1	26	4				
860 –	- 6 -	000000	1		Bulk	GP	gray w/rust, slightly moist. verv dense		123.9	4.1		NP	71	25	4	
	- 7 -		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				GRAVEL W/SAND cobbles, very slightly cemen	ted								
	9 -		1.1.1.1.1.1.1.Y.Y.		Bulk	GP	gray w/rust, slightly moist, very dense									
							BOH LEGEND					OTH	ERTE	STS		
F		B	8		G		DISTURBED SAMPLE	Sample Type Torvane (tsf)					Unco Cons Direc Unco Cons = Hyd	onfined olidati onsolic solidat drome	l Com on ar lated, ed, Ui ter	upres Und ndrai

PROJ	ECT:	SAN	TAC		(WES	T) CDA PF	ROJECT					_	_	SHE	ET	10	F
CLIEN	NT: <u>S</u>	ANT	AQU	JIN C	CITY				PROJE	CT NU	IMBE	R:_2	2014	01.0	034		
.OCA	TION:	LA	Г: N	39.9	97670,	LON: W	-111.81223 (SEE \$	SITE PLAN)	DATE S	TART	ED:	1	/15/	15	_	_	_
XCA	VATIC	DN M	ETH	OD:	CASE	580 BAC	KHOE		DATE C	OMPI	LETE	D: _1	/15/	15			_
PER	ATOR	: <u>N/</u>	A	_		_			GROUN	ID ELI	EVAT	ION	~4	1887	.0		_
DEPT	HTO	WAT	ER -		rial: ⊻	DRY'	AFTER 24 I	HOURS: ¥ N.M.	LOGGE	DBY	J.B	00	NE		_		_
	-	>	L	-	Sampl	e				Ţ.	e (%	Att	ter.	Gr	adati	ion	
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)		Material Description		Dry Dens (pcf)	Moisture Content ('	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%	
						CL	dk. brown, very moist	SANDY LEAN CLAY organics									
- 85	2 -				Bulk	GP	brown, moist, very dense			124.0	4.5						
- 0	3 -																
	4 -				Bulk	GP	brown, slightly moist, very dense	GRAVEL W/SAND cobbles, very slightly cementer	d	122.1	2.2		NP	76	23	1	
-	5-																
_	6 -				Bulk	SP	brown, moist, dense	SAND W/GRAVEL			5.8		NP	21	78	1	
30 —	7 -							very slightly cemented									
	8-							SILTY SAND									
	10-				Bulk	SM	brown, moist, med. dense										
								ROH									
F	RI	3	8	2(G		LEGEND: DISTURB	ED SAMPLE Bucket Sar 0.45 CTC	nple Type prvane (tsf)				OTH UC = CT = DS = UU =	ER TE Unco Cons Direc Uncc	STS onfined olidati t Shea	I Compon on ar lated, I	pre Un

						I) CDAFI	KUJECI					p . 0	014	01 0	134		
	TION	ANTA		20	07/67		-111 81416 /955	SITE PLAN)			ED.	R: <u>2</u> 1	/15/	01.0 15	/34	-	-
	VATIC		. IN	ാഴ. ററ	CASE	= 580 BAC			DATE	COMP	LETE	D: 1	/15/	. <u>.</u> 15			
		2. NA	 \	00.	UNUL	- 000 DAG			GROUN		EVAT	ION:	~4	950	0.0		
DEPT	H TO		ER -	INI	TIAL: ¥	DRY'	AFTER 24	HOURS: V.M.	LOGGE	DBY	J. B	00	NE				
				-	Sampl	e				~		Att	er.	Gr	adati	on	s
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)		Material Description		Dry Densit (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	Other Test
	1 -					GC-GM	brown, moist	SILTY CLAYEY GRAVEL W many cobbles	/SAND								
	2 -				Bulk	GP-GM	gray-brown, slightly moist	GRAVEL W/SILT & SAND many cobbles, slightly ceme	nted								
	3 -			1				BOH Backhoe refusal at 3'					38				
1	4 -																
1945 —	5-	4															
	6 -																
	7 -																
	- 8 -																
	9 -																
I				7	\overline{C}		LEGENI DISTUF	D: BED SAMPLE	Sample Type Torvane (tsf)				OTH UC = CT = DS =	ER TE	STS onfined	I Compon	ress

I ES	ECT:	SAN		QUI	N (WES	T) CDA PF	ROJECT			T	ESI	P	ΊT	NC SHE). 1 Eet	1 0	16 F 1
CLIEN	T: S	ANT	AQL	JIN	CITY				PROJE	CT NL	JMBE	R:_2	2014	01.0)34		
.OCA	TION:	LA	Γ: N	1 39	.97395,	LON: W	-111.81546 (SEE	SITE PLAN)	_ DATE S	START	ED:	-	1/15/	/15	-	_	_
EXCA	VATIC	on Mi	ETH	IOD	CASE	E 580 BAC	CKHOE		DATE C	COMP	LETE	D: _	1/15/	/15	_	_	
OPER	ATOR	R: _N/	4						_ GROUN				: <u>~</u> 4	1964	.0		-
DEPTH	H TO	WATI	ER	- IN		DRY'	AFTER 24	4 HOURS: ¥ N.M.	LOGGE	DBY	: <u>J. E</u>			Gr	adati	on I	-
	_	20	H	T	Sampi					nsity	ure t (%)	nit Dit	1 X	9		(%	ests
Elev. (ft)	Depth (ft)	Litholo	Type	Rec. (in)	See Legend	USCS (AASHTO)		Material Description		Dry De pcf	Moist	Liquid Lin	Plast. Ind	Gravel (%	Sand (%	Silt/Clay (Other 1
						CL	brown, very moist	LEAN CLAY W/SAND organics									
	1 -				Bulk	GP-GM	lt. brown, slightly moist very dense										
-	2 -	00000															
	3 -	0.000						GRAVEL W/SILT & SAND cobbles & boulders to 3'+ ir slightly cemented	diameter,								
60 —	4 -	0.0000			Bulk	GP-CM	lt. brown, slightly moist	i,									
-	5-	0.0000			Juik	GE-GIM	very dense										
		DITU		1				BOH Backhoe refusal at 5.5'									
	6 -							Dacking relusar at 0.0									
-	7 -																
	8 -	-1															
55 —	9 -	-															
						· · · · · ·											
_				_	-	L	LEGENI	D:		-		-	OTH	ER TE	STS	£	-
F	U	B	8	L	G		DISTUR	RBED SAMPLE	Sample Type - Torvane (tsf)				UC = CT = DS = UU = CU = HYD	= Unco = Cons = Direo = Unco = Cons) = Hw	ontinec colidati ct She onsolic solidat drome	a Com on ar lated, I led, Un ter	Unc

PROJE	CT:	SAN		QUI	N (WES	T) CDA PF	ROJECT					F		SHE	ET	10	۱. F
CLIEN	T: S/	ANTA	AQ	JIN	CITY	.,			PROJE	CT NU	IMBE	R : 2	2014	01.0)34		
LOCAT	ION:	LAT	T: N	1 39	.97356,	LON: W	-111.81589 (SEE SITE PLAN)	DATE S	TART	ED:	1	1/15/	15			_
EXCAV		N MI	ETH	IOD	CASE	E 580 BAC	CKHOE		DATE C	OMP	ETE	D: _1	1/15/	15		_	
OPERA	TOR	: <u>N</u> /	4						GROUN	ID ELI	EVAT	ION	-4	953	.0		_
DEPTH		WATI	ER	- IN	ITIAL: 🗵	DRY'	AFTE	R 24 HOURS: ¥ <u>N.M.</u>		DBY	J. B	00	NE				_
		>	L	_	Sampl	e	1			Į,	e%	Att	ter,	Gra	adati	on	
Elev. (ft)	Depth (ft)	Litholog	Type	Rec. (in)	See Legend	USCS (AASHTO)		Material Description		Dry Dens (pcf)	Moistur Content (Liquid Limi	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%	
						CL	brown, wet	SANDY LEAN CLAY organics									
1	1 -	1.1.1						BEDROCK BOH Backhoe refusal at 8"									
-	2 -																
4950 —	3 -																
-	4 -																
-	5—	-															
-	6 -																
-	7 -																
4945 —	8 -																
-	9 -																
	-				0		LEGI		- Sample Type				OTH UC =	ER TE	STS	I Com	pr

PRO	JECT:	SAN	TAQ	UIN (WES	T) CDA P	ROJECT		07.5		D :	044	SHE	ET	10	F 1
		ANT		N CITY		111 91652 (SEE SITE DI ANI)		CT NU	JMBE	R:_2	2014	101.0 /15	134	-	-
	ATION:			DA CV6	EUN: W	CHOF			LETE	р. –	1/16/	15			
		2111 IVI 2+ NL		D. CASI	2 300 BAC		GROUN		FVAT		· ~4	1937	0	_	
			FR -		DRY'	AFTER 24 HOURS: V N.M.	LOGGE	DBY	J.E	00	NE				-
			T	Samp	le					At	ter.	Gra	adati	on	
Elev. (ft)	Depth (ft)	Lithology	Type Pac (in)	See Legend	USCS (AASHTO)	Material Description		Dry Densit (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	Other Test
						Organics in top 6"									
935 -	- 1 -			Bulk T 0.47	CL	brown, moist to slightly LEAN CLAY moist, firm pinhole structure			18.2	31	11				
	3 -			Bulk	ML	It. red-brown, slightly moist, med. dense		86.8	3.3		NP	0	17	83	
	- 5					SANDY SILT non-plastic, pinhole structure	9								
930 -	- 6 -			Bulk T 0.99+	CL	red-brown, slightly moist, very stiff									
	- 8 -					LEAN CLAY sand lenses, blacky									
1	9 -			Bulk T 0.99+	CL	red-brown, slightly moist, very stiff									
	10-					вон									
	1					LECEND.				_	0714		STO	-	_
F	SI	3	8	ZG			ample Type Torvane (tsf)				UC = CT = DS = UU = CU =	Unco Direc Unco Cons Cons	nfined olidati t Shea nsolid olidate	l Comp on ar ated, U ed, Uni	Jndra Jndrair

.

TES	ST P		LO	G				1	Т	EST	P	IT	NC). 1	1.0	19
	IECT:	SAN			N (WES	I) CDA PF		PROJE	CT NI	IMBF	R: 2	2014	01.0)34	10	
		• 1 A		J 39	97206	LON: W	-111.81703 (SEE SITE PLAN)	DATES	TART	ED:	1	/16/	15			
EXCA	VATIO		ETH		CASE	580 BAC		DATE C	OMPI	LETE	D : 1	/16/	15			
OPER	RATOF	R: N	A		-			GROUN	ID ELI	EVAT	ION	: ~4	933	.0		
DEPT	н то	WAT	ER	- IN	TIAL: ¥	DRY'	AFTER 24 HOURS: X N.M.	LOGGE	D BY	J.E	300	NE				
-	1	1	1		Sampl	e			~		At	ter,	Gra	adati	ion	so .
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	Material Description		Dry Densit (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	Other Test
	- 1 -		X V X X X X X X X X X X X X X X X X X X		Bulk T 0.40	CL	brown, moist, firm			15.6	32	12				Proct. CBR
4930 –	- 3 -				Bulk 7 0.85	CL	brown, slightly moist, stiff		96.4	11.9	33	13				
	- 5-		XXXXXXXXXXXX				pinhole structure									
	- 7 -				Bulk T 0.99+	CL	brown, slightly moist, very stiff		92.1	9.0						
4925 –	- 8 -		NYNN NYN Y													
	9 -				Bulk	ML	red-brown, slightly moist SANDY SILT	1								
				-			ROH		-						-	
							BON									
F		B	8 RIN	K VG	G, INC.		UNDISTURBED SAMPLE	Sample Type Torvane (tsf)				OTH UC = CT = DS = UU = CU = HYD SS = DC =	ER TE Unco Direc Unco Cons Cons = Hyc Solub	STS onfinect olidati t Sheat onsolid olidati frome ole Sal ersive	i Com on ar lated, ed, Ur ter lt Clay	pressior Undrain Idrained

CLIENT: SANTAQUIN CITY PROJECT NUL LOCATION: LAT: N 39.97095, LON: W -111.81707 (SEE SITE PLAN) DATE STARTE EXCAVATION METHOD: CASE 580 BACKHOE DATE COMPL DATE COMPL OPERATOR: NA	MBE ED: ETEI J. B (%) trained (%) 15.2		201. 1/16 1/16 1/16 1 : ~ DNE ttter.	401. 5/15 5/15 493 G (%) Inverse	034 7.0 rada (%) pues	Sit/Clay (%)	
OPERATOR: NA GROUND ELE DEPTH TO WATER - INITIAL: Imitial: DRY' AFTER 24 HOURS: NM. LOGGED BY: Elev. Depth Imitial: Sample Material Description Imitial:	VAT J. B Woistrue Couteut (%) 15.2	Liquid Limit 2 00	Litter, Jack Index Index	Gravel (%) D 665	7.0 rada (%) pues	Sitt/Clay (%) uit	
DEPTH TO WATER - INITIAL: I DERY AFTER 24 HOURS: I N.M. LOGGED BY: Sample Material Description Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" Imag	J. B Woistnee (%) 15.2 4.2	Liquid Limit 2	blast. Index.	Gravel (%) D	Sand (%)	Silt/Clay (%)	
Elev. Depth Sample Material Description Material Description 1	Moisture Content (%)	Liquid Limit 2	Liter.	Gravel (%) D	Sand (%)	Silt/Clay (%)	
Elev. (ft) Depth (ft) g	Moisture 4.2		Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	
- 1 - GM dk. brown, very moist SILTY GRAVEL W/SAND - 1 - Bulk GC-GM It. brown, moist, very dense - 3 - SILTY CLAYEY GRAVEL W/SAND - - 3 - Bulk GP-GM brown, slightly moist, very dense - - 4 - - - - - - - 5 - - - - - - - 6 - - - - - - - 6 - - - - - -	15.2						
- 1 - Bulk GC-GM It. brown, moist, very dense - 2 - SILTY CLAYEY GRAVEL W/SAND - 3 - - SILTY CLAYEY GRAVEL W/SAND - 3 - - - - - 3 - - - - - - 4 - - - - - 124.0 - 5 - - - - - - 124.0 - 6 - - - - - - - - 6 - - - - - - - - 6 - - - - - - - - - 6 - <td< td=""><td>15.2 4.2</td><td></td><td></td><td></td><td></td><td>1.1</td><td></td></td<>	15.2 4.2					1.1	
Bulk GP-GM brown, slightly moist, 4 5 6 6 GRAVEL W/SILT & SAND	4.2			47	25	28	
- 4							
6 - GRAVEL W/SILT & SAND							
GRAVEL W/SILT & SAND							
Bulk GP-GM brown, slightly moist, many cobbles							
- 10- ВОН							
LEGEND:		_	OTH	IER T	ESTS	ed Corr	nore
RRAT(- DISTURBED SAMPLE 0.45 - Torvane (tsf)			CT =	= Con = Dire	solida	tion ear	

PROJ	ECT:	SAM	NTA	QU	IN (WES	T) CDA PF	ROJECT	_	_		_	_	SHE	ET	10	F 1
CLIEN	NT: S	ANT	AQ	UIN	CITY			PROJE	CT NI	JMBE	R: 2	2014	01.0)34		-
LOCA	TION:	LA	<u>T: I</u>	N 39	9.96961,	LON: W	-111.81692 (SEE SITE PLAN)	_ DATE S	START	ED:	-	1/16	15	-		_
	VATIO		ET	HOE	D: CASE	<u>= 580 BAC</u>	;KHOE					· ~/	034	0		_
			A ED	IN			AFTER 24 HOURS: V N M				300	NE	1004			-
DEFI			T	- 11	Sampl	e					At	ter,	Gr	adati	on	_
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	Material Description		Dry Density (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	Other Tests
	- 1 -				Bulk T 0.81	CL	LEAN CLAY brown, moist, stiff			21.6	32	13				
- 30 —	- 3 -	4			Bulk	ML	It. gray, slightly moist, med. dense SILT W/SAND plastic, pinhole structure			12.7	34	10				
-	- 5-		V	Ā			brown slightly maist									
	- 7 -		\land		Bulk	ML	med. dense SANDY SILT pinhole structure, clay lense to 3" thick	s & layers	87.7	14.2						
25 —	9 -		X		Bulk 7 0.99+	CL	LEAN CLAY gray-brown, slightly moist, very stiff									
		11	4	-			ВОН		-		-	-		-	-	-
					1		bon	_				-				
F		B	8 RII	X	G I. INC.		LEGEND: DISTURBED SAMPLE	Sample Type Torvane (tsf)	1			OTH UC = DS = UU = CU = HYD SS =	ER TE Unco Oriec Unco Cons Cons = Hyd Solut	STS onfined olidati t Shea onsolid olidate fromet ole Sal	l Comj on ar ated, l ated, Un ed, Un er t	ores Jnd drai

Laboratory Testing

SUMMARY OF TEST DATA

PROJECT LOCATION Santaquin (West) CDA Project

PROJECT NO.

201401-034

see site plan

FEATURE

Foundations

	DEPTH	IN	-PLACE	UNCONFINED OR	А	TTERBERG	LIMITS	MECI	HANICAL ANA	LYSIS		UNIFIED
HOLE NO	BELOW GROUND DR SURFACE UN (ft) WEI((pt)	DRY UNIT WEIGHT (pcf)	MOISTURE (%)	UU TRIAXIAL COMPRESSIVE STRENGTH (psf)	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	PLASTICITY INDEX (%)	PERCENT GRAVEL	PERCENT SAND	PERCENT SILT & CLAY	PERCENT FINER THAN 0 005 mm	CLASSIFICATION SYSTEM / (AASHTO CLASSIFICATION)
14-01	10-11.5		11.0	9000**	25	17	8					CL-1
	20-21.5		8.3	10000			NP	58	35	7		GP-GM
	40-41.5	91.4	25.2	2920*	48	21	27					CL-2
	50-51.5		6.5				NP	54	29	17		GM
14-02	5-6.5		20.4			-	NP	1	24	75		ML
1102	15-16.5		6.6				NP	51	41	8		GP-GM
	30-31.5	100.2	21.9	1760*	26	19	7	-				CL-ML
	40-41.5	99.6	22.9	1200*			NP	0	38	62		ML
	55-56.5	90.4	32.4	1800*	35	22	13				1	CL-1
14-03	3-3.3		1.6	9000**	26	20	6					CL-ML
	9-10.5		21.3				NP	0	60	40	1.1	SM
	20-21.5	100.4	25.6	uu 5587	25	20	5					CL-ML
	35-36.5		24.4				NP	0	21	79		ML
14-04	3-4		4.2			-	NP	49	30	21		GM
	9-10.5		14.2		21	19	2					ML
	15-16	156.9	0.1	uc 12,570 psi								
	25-26	162.1	0.1	uc14,550 psi								
14-05	8-8.5	168.3	0.1	uc 11,380 psi		-						
-	20-20.5	163.8	0.2	uc 17,230 psi			1					
	36-36.5	163.2	0.1	uc 12,270 psi				-		-		
		-										
_							1	1				

*Torvane value used to estimate unconfined compressive strength.

Table 1

SUMMARY OF TEST DATA

PROJECT LOCATION		Santaq see site	uin (West e plan) CDA Project		F F	PROJEC [®] EATURI	T NO. E	201401 Founda	-034 tions				
DEPTH		iN	-PLACE	UNCONFINED OR	A	TERBERG	LIMITS	MECI	HANICAL ANA	LYSIS		UNIFIED SOIL		
HOLE NO	BELOW GROUND SURFACE (ff)	DRY UNIT WEIGHT (pcf)	MOISTURE (%)	UU TRIAXIAL COMPRESSIVE STRENGTH (psf)	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	PLASTICITY INDEX (%)	PERCENT GRAVEL	PERCENT SAND	PERCENT SILT & CLAY	PERCENT FINER THAN 0.005 mm	CLASSIFICATION SYSTEM / (AASHTO CLASSIFICATION)		
					Tes	t Pi	ts							
15-01	3-4	86.2	23.5	1800*	33	22	11					CL-1		
	6-7	90.3	26.4	2880*	30	21	9					CL-1		
15-02	3-4		2.7				2	59	25	16		GM		
	5-6	103.7	17.1	4000**	31	22	9					CL-1		
15-03	3-3.5	89.4	13.1	3200*	28	19	9					CL-1		
	6-7		2.7				NP	27	69	4		SP		
15-04	1-2	105.8	14.3				NP	0	59	41		SM		
	3-4		5.9				NP	0	37	63		ML		
15-05	6-7	93.1	9.7	3000*	20	16	4			-		CL-ML		
	9-10		9.7	2400*	26	20	6					CL-ML		
15-06	6-7	88.3	12.5	2600*	24	18	6					CL-ML		
	9-10		14.7	3200*	30	20	10					CL-1		
15-07	6-7	91.6	15.5	2280*	27	20	7	-				CL-ML		
	12-13		6.5		23	17	6	56	17	27		GC-GM		
15-08	1-2		7.0				NP	65	29	6		GP-GM		
	3-4	91.2	15.2	2640*	35	26	9					ML		
15-09	1-2	94.2	19.6	3160*	27	19	8					CL-1		
	3-4		19.6	1520*			NP	0	1	99		ML		

*Torvane value used to estimate unconfined compressive strength.

**Pocket Penetrometer

NP=Non-Plastic

Table 1

SUMMARY OF TEST DATA

PROJECT		Santag	uin (West)) CDA Project		< F		T NO.	201401	01401-034 oundations						
LUCATION		See Site					EATOR		i ounda	10113						
DEPTH		IN	-PLACE	UNCONFINED OR	A	TTERBERG	LIMITS	MECH	HANICAL ANA	LYSIS						
HOLE NO	BELOW GROUND SURFACE (ft)	DRY UNIT WEIGHT (pcf)	MOISTURE (%)	UU TRIAXIAL COMPRESSIVE STRENGTH (psf)	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	PLASTICITY INDEX (%)	PERCENT GRAVEL	PERCENT SAND	PERCENT SILT & CLAY	PERCENT FINER THAN 0.005 mm	CLASSIFICATION SYSTEM / (AASHTO CLASSIFICATION)				
	_		1		Tes	t Pit	ts									
15-10	3-4		4.5			1	NP	62	34	4		GP				
	4.5-5	97.6	8.0	4000**	30	21	9		-	<u> </u>		CL-1				
15-11	3-4	95.4	24.9	2920*	32	23	9					CL-1				
15-12	3-4	-	31	-			NP	74	16	10		GP-GM				
10-12	04		0.1													
15-13	1-2		18.8	1400**	23	17	6				2	CL-ML				
	3-4	97.6	25.1	1880*	26	22	4			-		ML				
	6-7		4.1				NP	71	25	4		GP				
15-14	3-4		2.2				NP	76	23	1		GP				
	6-7	· ~ · ·	5.8				NP	21	78	1		SP				
15-18	1-2		18.2	1880*	31	20	11					CL-1				
	3-4	86.8	3.3	_			NP	0	17	83		ML				
15-19	1-2	-	15.6	1600*	32	20	12					CL-1				
	3-4	96.4	11.9	3400*	33	20	13					CL-1				
15-20	1-2		15.2				4	47	25	28		GC-GM				
15-21	1-2		21.6	3240*	32	19	13					CL-1				
	3-4	-	12.7	-	34	24	10					ML				
										1. Sec. 1.						

*Torvane value used to estimate unconfined compressive strength.

NP=Non-Plastic

MATERIAL: SANDY LEAN CLAY, CL (REMOLDED)

DIRECT SHEAR TEST Santaquin (West) CDA Project

Santaquin, Utah County, Utah

Project:

HOLE NO.: 14-1

DEPTH: 10'-11.5'

20

40

60

0

Project:

0

Test	Sample	Samp	le Data	Degree	Normal	Maximum	Strain	Shear Shear	Strength neters
No. or Symbol	Size (inches)	Dry Density (pcf)	Moisture Content (%)	of Saturation (%)	Stress σ _n (psi)	Shear Stress r (psi)	Rate (inches/ minute)	Friction Angle (degrees)	Cohesion (psi)
•	2.43	110.9	14.1	~100	22.0	13.8	0.0006	-	
	2.42	110.4	14.1	~100	44.0	25.9	0.0006	30.9	1
	2.43	111.0	14.0	~100	69.9	42.5	0.0006	-	
								· · · · · ·	

Normal Stress, o, (psi)

80

SILT W/SAND (PLASTIC), ML (REMOLDED)

100

120

160

180

140

RB&G ENGINEERING, INC. DIRECT SHEAR TEST Santaquin (West) CDA Project Santaquin, Utah County, Utah

HOLE NO.: 14-4

DEPTH: 9'-10.5'

RBG No.201401.034Report No.NASheet1 of 1

ASTM D698

SANTAQUIN (WEST) CDA PROJECT

Santaquin, Utah County, Utah

MOISTURE-DENSITY RELATION (PROCTOR)

Location	TEST PIT 15-9 AT 1'-2'	Test Date	01/19/2015	
Sample ID	NA	Technician	D. MALEN, J. BOONE	
Material	LEAN CLAY	Classification	CL (Test)	

100% Saturation Curve	UNCORRECTED RESULTS		OVERSIZE CORRECTION		
NA Not applicable / available	Max. Dry Density (pcf)	107.0	Max. Dry Density (pcf)	NA	
Specific gravity type is bulk unless otherwise indicated.	Optimum Moisture (%)	19.8	Optimum Moisture (%)	NA	
Results are as per the test method listed above and relate	Specific Gravity	2.70	Specific Gravity	NA	
material is per ASTM D4718 or AASHTO T224.	Moisture, As-Received (%)	19	Percent Oversize (%)	0	

1435 West 820 North Provo, Utah 84601 801-374-5771 Provo 801-521-5771 Salt Lake City

RBG No. 201401.034 Report No. NA Sheet 1 of 1

ASTM D698

SANTAQUIN (WEST) CDA PROJECT

Santaquin, Utah County, Utah

MOISTURE-DENSITY RELATION (PROCTOR)

Location	TEST PIT 15-13 AT 1'-2'	Test Date	01/19/2015
Sample ID	NA	Technician	J. NEIL
Material	SILTY CLAY W/SAND	Classification	CL-ML (Test)

100% Saturation Curve	UNCORRECTED RESULTS		OVERSIZE CORRECTION		
NA Not applicable / available	Max. Dry Density (pcf)	113.0	Max. Dry Density (pcf)	NA	
Specific gravity type is bulk unless otherwise indicated.	Optimum Moisture (%)	15.0	Optimum Moisture (%)	NA	
Results are as per the test method listed above and relate	Specific Gravity	2.70	Specific Gravity	NA	
only to the items tested. Rock correction for >3/4-inch material is per ASTM D4718 or AASHTO T224.	Moisture, As-Received (%)	18	Percent Oversize (%)	0	

1435 West 820 North Provo, Utah 84601 801-374-5771 Provo 801-521-5771 Salt Lake City

RB&G ENGINEERING, INC. **B**&

RBG No. 201401.034 Report No. NA Sheet 1 of 1

ASTM D698

SANTAQUIN (WEST) CDA PROJECT

Santaquin, Utah County, Utah

MOISTURE-DENSITY RELATION (PROCTOR)

Location	n TEST PIT 15-19 AT 1'-2'	Test Date	01/19/2015
Sample ID	NA	Technician	D. MALEN, J. NEIL, J. BOONE
Material	LEAN CLAY W/SAND	Classification	CL (Test)

100% Saturation Curve	UNCORRECTED RESULTS		OVERSIZE CORRECTION		
NA Not applicable / available	Max. Dry Density (pcf)	105.6	Max. Dry Density (pcf)	NA	
Specific gravity type is bulk unless otherwise indicated.	Optimum Moisture (%) 19.1		Optimum Moisture (%)	NA	
Results are as per the test method listed above and relate	Specific Gravity	2.70	Specific Gravity	NA	
material is per ASTM D4718 or AASHTO T224.	Moisture, As-Received (%)	15	Percent Oversize (%)	0	

1435 West 820 North Provo, Utah 84601 801-374-5771 Provo 801-521-5771 Salt Lake City

RB&G

Figure CALIFORNIA BEARING RATIO TEST RESULTS

Santaquin (West) CDA Project Santaquin, Utah County, Utah

Figure CALIFORNIA BEARING RATIO TEST RESULTS

Santaquin (West) CDA Project Santaquin, Utah County, Utah

Figure CALIFORNIA BEARING RATIO TEST RESULTS

Santaquin (West) CDA Project Santaquin, Utah County, Utah

Settlement Analyses

Santaquin (West) CDA Project Estimated Primary Consolidation Settlement Profile Beneath Roadway Embankment

Stability Analyses

Santaquin (West) CDA Project 30-ft Embankment Stability Static - Long Term Condition 1000) 250-psf Surcharge Load Description: Embankment Wt: 140 Cohesion: 0 Phi: 36 4.87 Description: Sandy CL Wt: 110 Cohesion: 125 Phi Description: GP-GM Wt: 125 Cohesion: 0 Phi: 36 Phi: 26 4.86 Elevation (ft) (x 4.85 Embankment 4.84 Sandy CL 4.83 4.82 **GP-GM** 4.81 80 100 120 140 160 180 200 220 240 260 280 20 40 60 -80 -60 -40 -20 0 Offset (ft)

Pavement Calculations

ESAL Calculations West Santaquin CDA Project Santaquin, Utah

	Assumed	3,500
Vehicle Type		2015 AADT
(Axle Class)	% of Traffic	By Class
1-2	47	1645
3	47.5	1663
4	1	35
5-7	4	140
8-10	0.25	9
11-13	0.25	9
0.01	100	

total 100

Assumed

Distribution assumed by RB&G Engineering

State Route		Santaquin CI	DA							
Beg. M.P.					End M.P.					
Project Scope West Santaquin CDA Project			ct	Region		3				
Pavement Type Flexible										
Construction		2015			Functiona	l Class	16			
Design Period	(years)	20			Growth Ra	ate (%)	7.00			
Vehicle Type (Axle Class)	2015 AADT	Growth Factors	Design Traffic	ESAL Factor	MidPoint Adjust Factor	MidPoint Truck Factor	Directional Factor	Lane Factor	Design ESALs	
	(A)	(B)	(C)	(D)		(D')			(E)	
1-2	1,645	41.00	24,614,718	0.0002	0	0.0002	0.5	1.0	2,461.5	
3	1,663	41.00	24,884,059	0.03	0	0.03	0.5	1.0	373,260.9	
4	35	41.00	523,717	0.88	0	0.88	0.5	1.0	230,435.7	
5-7	140	41.00	2,094,870	0.1912	0.1	0.2912	0.5	1.0	305,013.0	
8-10	9	41.00	134,670	2.6028	0.3	2.9028	0.5	1.0	195,460.3	
11-13	9	41.00	134,670	3.3584	0.3	3.6584	0.5	1.0	246,338.7	
									1,352,970	
	Patterned after Table 3B-2 UDOT Pavement Design Manual									

1993 AASHTO Pavement Design

DARWin Pavement Design and Analysis System

A Proprietary AASHTOWare Computer Software Product Engineer

Flexible Structural Design Module

West Santaquin CDA Project Subgrade CBR 4.5, ESALS

Flexible Structural Design

18-kip ESALs Over Initial Performance Period	1,350,000
Initial Serviceability	4.2
Terminal Serviceability	2.25
Reliability Level	90 %
Overall Standard Deviation	0.45
Roadbed Soil Resilient Modulus	6,750 psi
Stage Construction	1

Calculated Design Structural Number

Thickness precision

3.69 in

Specified Layer Design

		Struct	Drain			
		Coef.	Coef.	Thickness	Width	Calculated
Layer	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	<u>(Di)(in)</u>	<u>(ft)</u>	<u>SN (in)</u>
1	HMA	0.44	1	5	-	2.20
2	UTBC	0.14	1	6	-	0.84
3	GB	0.12	0.8	10	-	0.96
Total	-	-	-	21.00	-	4.00

Layered Thickness Design

Actual

		Struct	Drain	Spec	Min	Elastic		Calculated	
		Coef.	Coef.	Thickness	Thickness	Modulus	Width	Thickness	Calculated
Layer	Material Description	<u>(Ai)</u>	<u>(Mi)</u>	(Di)(in)	<u>(Di)(in)</u>	<u>(psi)</u>	<u>(ft)</u>	<u>(in)</u>	<u>SN (in)</u>
1	HMA	0.44	1	-	1	365,000	12	5.03	2.21
2	UTBC	0.14	1	-	-	27,000	12	3.89	0.54
3	GB	0.12	0.8	-	-	15,000	12	9.72	0.93
Total	-	-	-	-	-	-	-	18.64	3.69